Presentation is loading. Please wait.

Presentation is loading. Please wait.

MILLIMETER WAVE SPECTRUM OF NITROMETHANE

Similar presentations


Presentation on theme: "MILLIMETER WAVE SPECTRUM OF NITROMETHANE"— Presentation transcript:

1 MILLIMETER WAVE SPECTRUM OF NITROMETHANE
Vadim Ilyushin Institute of Radio Astronomy of NASU, Kharkiv, Ukraine.

2 Previous work on the CH3NO2 rotational spectrum
[1] E. Tannenbaum, R.D. Johnson, R.J. Myers, W.D. Gwinn, J. Chem. Phys. 22 (1954) 949. [2] E. Tannenbaum, R.J. Myers, W.D. Gwinn, J. Chem. Phys. 25 (1956) 42–47. [3] A.P. Cox, S. Waring, K.Morgenstern, Nature Physical Science Vol. 229 (1971) [4] L. Engelbrecht, D. Sutter, H. Dreizler, Z. Natruforsch 28a (1973) [4] A.P. Cox, S. Waring, J. Chem. Soc., Faraday Trans. 2 (68) (1972) 1060–1071. [5] F. Rohart, J. Mol. Spectrosc. 57 (1975) 301–311 [6] G.O. Sørensen, T. Pedersen, Stud. Phys. Theor. Chem. 23 (1983) 219–236. [7] G.O. Sørensen, T. Pedersen, H. Dreizler, A. Guarnieri, A.P. Cox, J. Mol. Struct. 97 (1983) 77–82. Previous Results in these papers: maximum frequency - 80 GHz, rotational quantum number range: J  29 and Ka  18.

3 Motivation V6  2 cm-1 = 3.46 D A = 13341 MHz B = 10545 MHz
100 200 300 400 500 600 700 800 900 cm-1 torsion m 1 2 3 4 5 6 7 8 9 10 11 12 13 (NO2)i (NO2)o (NO)s (C-N) SAV V6  2 cm-1 = 3.46 D A = MHz B = MHz C = 5876 MHz B1/B2 and E1 type levels are not populated due to spin statistics  = stretch;  = bend;  = rock; a = asymmetric; s = symmetric; i = in-plane; o = out-of-plane. M.B. Dawadi, S. Twagirayezu, D.S. Perry, B. E. Billinghurst, J. Mol. Spectrosc. 315 (2015) 10–15

4 Modification of the RAM36 program
V. Ilyushin, Z. Kisiel, L. Pszczółkowski, H. Mäder, J. T. Hougen // J. Mol. Spectrosc. Vol. 259, pp (2010). The RAM36 (rho-axis-method for 3 and 6-fold barriers) code realizes the Rho-axis-method approach for the molecules with the C3v top attached to a molecular frame of Cs or C2v symmetry and having 3- or 6-fold barrier to internal rotation respectively. The program carries out a global fit of rotational transitions in several torsional states simultaneously using a two step diagonalization procedure.

5 MW spectrometer in Kharkiv
BWO, 34 – 150 GHz PLL IF = 25 MHz FM modulated synthesizer 25 MHz Klystron 3.4 – 5.2 GHz IF = 5 MHz Absorbing cell Amplifier Lock-in detector Sine wave synthesizer 7 – 120 KHz DAC DDS AD9851 30 – 60 MHz Band-pass amplifier MHz Synthesizer 360 MHz Frequency divider f/2 Frequency Doubler (optional) Detector Schottky Reference synthesizer MHz

6 Portion of the recorded spectrum of CH3NH2 around 134 GHz.
133840 134280 134720 135160 MHz Experiment Prediction

7 Summary of the Least Squares Fit Torsional state Measurement Precision
m # Jmax rms(kHz) unc(kHz) # Jmax rms(kHz)  Overall rms: 25.9 kHz Weighted rms: 0.89 Number of parameters: 93 m≠ Frequency range: 9 – 237 GHz (previous GHz ) Jmax =50, Kamax = 42 (previous Jmax = 29, Kamax = 18) Number of lines: 5838 (correspond to 4478 torsion-rotation transitions previous number – less than 200)

8 Conclusions A new study of the nitromethane (CH3NO2) spectrum in the millimeter wave frequency range up to 237 GHz has been carried out and a fit within experimental error has been achieved for the lowest 11 m torsional states of the molecule using the RAM approach. The RAM36 program is now capable to treat quadrupole hyperfine structure due to one nucleus with nonzero quadrupole moment in the first order of perturbation theory.

9 Thank you for your attention


Download ppt "MILLIMETER WAVE SPECTRUM OF NITROMETHANE"

Similar presentations


Ads by Google