Self-Inductance When the switch is closed, the current does not immediately reach its maximum value Faraday’s law can be used to describe the effect.

Slides:



Advertisements
Similar presentations
Inductance Self-Inductance RL Circuits Energy in a Magnetic Field
Advertisements

CHAPTER 32 inductance 32.1 Self-Inductance 32.3 Energy in a Magnetic Field.
Inductors and Inductance A capacitor can be used to produce a desired electric field. Similarly, an inductor (symbol ) can be used to produce a desired.
The current through the inductor can be considered a sum of the current in the circuit and the induced current. The current in the circuit will be constant,
Alternating Current Circuits
Physics 1402: Lecture 21 Today’s Agenda Announcements: –Induction, RL circuits Homework 06: due next MondayHomework 06: due next Monday Induction / AC.
Dr. Jie ZouPHY Chapter 32 Inductance. Dr. Jie ZouPHY Outline Self-inductance (32.1) Mutual induction (32.4) RL circuits (32.2) Energy in a.
Ben Gurion University of the Negev Week 9. Inductance – Self-inductance RL circuits Energy in a magnetic field mutual inductance.
Chapter 32: Inductance Reading assignment: Chapter 32
Physics 4 Inductance Prepared by Vince Zaccone
Ch. 30 Inductance AP Physics. Mutual Inductance According to Faraday’s law, an emf is induced in a stationary circuit whenever the magnetic flux varies.
Induction and Inductance When a bar magnet moves towards the loop, there is a deflection on the ammeter and when the magnet is moved away, there is also.
Physics 2102 Inductors, RL circuits, LC circuits Physics 2102 Gabriela González.
Lectures (Ch. 30) Inductance and Self-inductunce
-Self Inductance -Inductance of a Solenoid -RL Circuit -Energy Stored in an Inductor AP Physics C Mrs. Coyle.
Fall 2008Physics 231Lecture 10-1 Chapter 30 Inductance.
AP Physics C Montwood High School R. Casao
INDUCTANCE. When the current in a loop if wire changes with time, an emf is induced in the loop according to Faraday’s law. The self- induced emf is Ɛ.
Chapter 32 Inductance.
RC, RLC circuit and Magnetic field RC Charge relaxation RLC Oscillation Helmholtz coils.
Copyright © 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits.
Chapter 32 Inductance. Joseph Henry 1797 – 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one.
Rotating Generators and Faraday’s Law 0 For N loops of wire.
1 Chapter 16 Capacitors and Inductors in Circuits.
Chapter 30 Inductance. Self Inductance When a time dependent current passes through a coil, a changing magnetic flux is produced inside the coil and this.
1 Faraday’s Law Chapter Ampere’s law Magnetic field is produced by time variation of electric field.
Inductance and AC Circuits. Mutual Inductance Self-Inductance Energy Stored in a Magnetic Field LR Circuits LC Circuits and Electromagnetic Oscillations.
Chapter 24 Inductance and
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 32 Inductance. Self-inductance  A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying.
Chapter 32 Inductance. Introduction In this chapter we will look at applications of induced currents, including: – Self Inductance of a circuit – Inductors.
Copyright © 2009 Pearson Education, Inc. Chapter 33 Inductance, Electromagnetic Oscillations, and AC Circuits.
Chapter 29 Electromagnetic Induction and Faraday’s Law
Chapter 32 Inductance.
Physics 121 Practice Problem Solutions 12 Inductance
Lecture 18-1 Ways to Change Magnetic Flux Changing the magnitude of the field within a conducting loop (or coil). Changing the area of the loop (or coil)
Self-Inductance and Circuits LC circuits. 0 1τ 2τ 3τ 4τ 63% ε /R I t Recall: RC circuit, increasing current.
Chapter 32 Inductance L and the stored magnetic energy RL and LC circuits RLC circuit.
AP Physics C III.E – Electromagnetism. Motional EMF. Consider a conducting wire moving through a magnetic field.
General electric flux definition The field is not uniform The surface is not perpendicular to the field If the surface is made up of a mosaic of N little.
Lecture 27: FRI 20 MAR Inductors & Inductance Ch.30.7–9 Inductors & Inductance Physics 2102 Jonathan Dowling Nikolai Tesla.
Chapter 30 Inductance. Inductor and Inductance Capacitor: store electric energy Inductor: store magnetic energy Measure how effective it is at trapping.
When the switch is closed, the current does not immediately reach its maximum value Faraday’s law can be used to describe the effect As the source current.
Self Inductance. A variable power supply is connected to a loop. The current in the loop creates a magnetic field. What happens when the power supply.
Chapter 32 Inductance. Joseph Henry 1797 – 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one.
Chapter 32 Inductance. Self-inductance Some terminology first: Use emf and current when they are caused by batteries or other sources Use induced emf.
Slide 1Fig 32-CO, p Slide 2  As the source current increases with time, the magnetic flux through the circuit loop due to this current also increases.
INDUCTANCE. When the current in a loop if wire changes with time, an emf is induced in the loop according to Faraday’s law. The self- induced emf is Ɛ.
Copyright © 2009 Pearson Education, Inc. Chapter 32: Inductance, Electromagnetic Oscillations, and AC Circuits.
Inductance and AC Circuits. Mutual Inductance Self-Inductance Energy Stored in a Magnetic Field LR Circuits LC Circuits and Electromagnetic Oscillations.
Chapter 29 Electromagnetic Induction and Faraday’s Law
SI leader: Rosalie Dubberke
Chapter 30 Lecture 31: Faraday’s Law and Induction: II HW 10 (problems): 29.15, 29.36, 29.48, 29.54, 30.14, 30.34, 30.42, Due Friday, Dec. 4.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Lecture 10 Induction Applications Chapter 20.6  20.8 Outline Self-Inductance RL Circuits Energy Stored in a Magnetic Field.
Lesson 10 Calculation of Inductance LR circuits
Thursday August 2, PHYS 1444 Ian Howley PHYS 1444 Lecture #15 Thursday August 2, 2012 Ian Howley Dr. B will assign final (?) HW today(?) It is due.
1 Mid-term review Charges and current. Coulomb’s Law. Electric field, flux, potential and Gauss’s Law. Passive circuit components.  Resistance and resistor,
AP Physics C III.E – Electromagnetism. Motional EMF. Consider a conducting wire moving through a magnetic field.
1 Mid-term review Charges and current. Coulomb’s Law. Electric field, flux, potential and Gauss’s Law. Passive circuit components.  Resistance and resistor,
Copyright © 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits.
Copyright © 2009 Pearson Education, Inc. Chapter 29 Electromagnetic Induction and Faraday’s Law.
Mutual Inductance Mutual inductance: a changing current in one coil will induce a current in a second coil: And vice versa; note that the constant M, known.
Chapter 32 Inductance 32-1 Self-Inductance 32-3 Energy of a Magnetic Field.
Chapter 32 Inductance 32-1 Self-Inductance 32-3 Energy of a Magnetic Field.
Chapter 32 Inductance 32-1 Self-Inductance 32-3 Energy of a Magnetic Field.
University Physics Chapter 14 INDUCTANCE.
Chapter 31B - Transient Currents and Inductance
Chapter 32 Problems 6,7,9,16,29,30,31,37.
Chapter 32 Inductance 32-1 Self-Inductance
Presentation transcript:

Self-Inductance When the switch is closed, the current does not immediately reach its maximum value Faraday’s law can be used to describe the effect

Self-induced emf A current in the coil produces a magnetic field directed toward the left (a) If the current increases, the increasing flux creates an induced emf of the polarity shown (b) The polarity of the induced emf reverses if the current decreases (c)

Self Inductance Define: Self Inductance

Inductance of a Solenoid The magnetic flux through each turn is Therefore, the inductance is This shows that L depends on the geometry of the object

Inductance Units

3. A 2. 00-H inductor carries a steady current of 0. 500 A 3. A 2.00-H inductor carries a steady current of 0.500 A. When the switch in the circuit is opened, the current is effectively zero after 10.0 ms. What is the average induced emf in the inductor during this time? 5. A 10.0-mH inductor carries a current I = Imax sin ωt, with Imax = 5.00 A and ω/2π = 60.0 Hz. What is the back emf as a function of time? 7. An inductor in the form of a solenoid contains 420 turns, is 16.0 cm in length, and has a cross-sectional area of 3.00 cm2. What uniform rate of decrease of current through the inductor induces an emf of 175 μV?

LR Circuits Charging Kirchhoff Loop Equation: Solution:

LR Circuits Discharging Kirchhoff Loop Equation: Solution:

Active Figure 32.3 (SLIDESHOW MODE ONLY)

14. Calculate the resistance in an RL circuit in which L = 2 14. Calculate the resistance in an RL circuit in which L = 2.50 H and the current increases to 90.0% of its final value in 3.00 s. 20. A 12.0-V battery is connected in series with a resistor and an inductor. The circuit has a time constant of 500 μs, and the maximum current is 200 mA. What is the value of the inductance? 24. A series RL circuit with L = 3.00 H and a series RC circuit with C = 3.00 μF have equal time constants. If the two circuits contain the same resistance R, (a) what is the value of R and (b) what is the time constant?

Energy in a coil PE in an Inductor PE in an Capacitor

Energy Density in a coil PE in an Inductor

31. An air-core solenoid with 68 turns is 8 31. An air-core solenoid with 68 turns is 8.00 cm long and has a diameter of 1.20 cm. How much energy is stored in its magnetic field when it carries a current of 0.770 A? 33. On a clear day at a certain location, a 100-V/m vertical electric field exists near the Earth’s surface. At the same place, the Earth’s magnetic field has a magnitude of 0.500 × 10–4 T. Compute the energy densities of the two fields. 36. A 10.0-V battery, a 5.00-Ω resistor, and a 10.0-H inductor are connected in series. After the current in the circuit has reached its maximum value, calculate (a) the power being supplied by the battery, (b) the power being delivered to the resistor, (c) the power being delivered to the inductor, and (d) the energy stored in the magnetic field of the inductor.

Example 32-5: The Coaxial Cable Calculate L for the cable The total flux is Therefore, L is The total energy is

Mutual Inductance

Mutual Inductance example

LC Circuits Kirchhoff Loop Equation: Solution:

Energy in an LC circuit

Active Figure 32.17 (SLIDESHOW MODE ONLY)

LRC Circuits Kirchhoff Loop Equation: Solution:

Damped RLC Circuit The maximum value of Q decreases after each oscillation R < RC This is analogous to the amplitude of a damped spring-mass system

Active Figure 32.21 (SLIDESHOW MODE ONLY)

LRC Circuits Underdamped Critically Damped Overdamped

41. An emf of 96.0 mV is induced in the windings of a coil when the current in a nearby coil is increasing at the rate of 1.20 A/s. What is the mutual inductance of the two coils? 49. A fixed inductance L = 1.05 μH is used in series with a variable capacitor in the tuning section of a radiotelephone on a ship. What capacitance tunes the circuit to the signal from a transmitter broadcasting at 6.30 MHz? 55. Consider an LC circuit in which L = 500 mH and C = 0.100 μF. (a) What is the resonance frequency ω0? (b) If a resistance of 1.00 kΩ is introduced into this circuit, what is the frequency of the (damped) oscillations? (c) What is the percent difference between the two frequencies?

LC Demo R = 10 W C = 2.5 mF L = 850 mH Calculate period What if we change C = 10 mF Underdamped? How can we change damping?