LINUX Virtualization Running other code under LINUX.

Slides:



Advertisements
Similar presentations
Virtualization Dr. Michael L. Collard
Advertisements

Virtual Machine Technology Dr. Gregor von Laszewski Dr. Lizhe Wang.
Bart Miller. Outline Definition and goals Paravirtualization System Architecture The Virtual Machine Interface Memory Management CPU Device I/O Network,
Virtual Machine Security Design of Secure Operating Systems Summer 2012 Presented By: Musaad Alzahrani.
Network Implementation for Xen and KVM Class project for E : Network System Design and Implantation 12 Apr 2010 Kangkook Jee (kj2181)
Virtualization Techniques for Cloud Computing
A. Frank - P. Weisberg Operating Systems Structure of Operating Systems.
Virtual Machines. Virtualization Virtualization deals with “extending or replacing an existing interface so as to mimic the behavior of another system”
Virtualization B. Ramamurthy. References Practical Virtualization Solutions: Virtualization from the Trenches by K. Hess and A. Newman, Prentice-Hall.
Virtualization for Cloud Computing
Virtual Machine Monitors CSE451 Andrew Whitaker. Hardware Virtualization Running multiple operating systems on a single physical machine Examples:  VMWare,
A Brief Introduction To Virtualization Technologies Yin Yunqiao HP.
Ashtyn Hemendinger Natalie Mark Hong Ding Joseph Minjae Lee.
Methodologies, strategies and experiences Virtualization.
Virtualization-optimized architectures
Tanenbaum 8.3 See references
Operating System Virtualization
Zen and the Art of Virtualization Paul Barham, et al. University of Cambridge, Microsoft Research Cambridge Published by ACM SOSP’03 Presented by Tina.
Virtualization Virtualization is the creation of substitutes for real resources – abstraction of real resources Users/Applications are typically unaware.
An Introduction to Xen Prof. Chih-Hung Wu
CS 149: Operating Systems April 21 Class Meeting
Microkernels, virtualization, exokernels Tutorial 1 – CSC469.
SAIGONTECH COPPERATIVE EDUCATION NETWORKING Spring 2010 Seminar #1 VIRTUALIZATION EVERYWHERE.
SAIGONTECH COPPERATIVE EDUCATION NETWORKING Spring 2009 Seminar #1 VIRTUALIZATION EVERYWHERE.
1 Xen and the Art of Virtualization Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, Andrew Warfield.
Virtualization Concepts Presented by: Mariano Diaz.
Benefits: Increased server utilization Reduced IT TCO Improved IT agility.
Secure & flexible monitoring of virtual machine University of Mazandran Science & Tecnology By : Esmaill Khanlarpour January.
Virtualization Paul Krzyzanowski Distributed Systems Except as otherwise noted, the content of this presentation is licensed.
Virtual Machine and its Role in Distributed Systems.
CS533 Concepts of Operating Systems Jonathan Walpole.
High Performance Computing on Virtualized Environments Ganesh Thiagarajan Fall 2014 Instructor: Yuzhe(Richard) Tang Syracuse University.
 Virtual machine systems: simulators for multiple copies of a machine on itself.  Virtual machine (VM): the simulated machine.  Virtual machine monitor.
資工系網媒所 NEWS 實驗室 /450 What is Virtualization ? etc Virtualization Running Applications (x-platform) Running Applications (x-platform) Security Sharing Hardware.
Cloud Operating System Unit 09 Cloud OS Core Technology M. C. Chiang Department of Computer Science and Engineering National Sun Yat-sen University Kaohsiung,
Introduction to virtualization
A. Frank - P. Weisberg Operating Systems Structure of Operating Systems.
Full and Para Virtualization
Lecture 12 Virtualization Overview 1 Dec. 1, 2015 Prof. Kyu Ho Park “Understanding Full Virtualization, Paravirtualization, and Hardware Assist”, White.
Operating-System Structures
Protection of Processes Security and privacy of data is challenging currently. Protecting information – Not limited to hardware. – Depends on innovation.
CSE 451: Operating Systems Winter 2015 Module 25 Virtual Machine Monitors Mark Zbikowski Allen Center 476 © 2013 Gribble, Lazowska,
Virtualization and Virtual Machines (VM) Tom Gianos 3/29/06.
CLUG TALK Virtualbox Tuesday, 29 September 2009 One of the Jonathans.
Overview of Virtualization The magic of virtual machines Borislav Varadinov Telerik Software Academy System Administrator Marian.
Virtualization Neependra Khare
Virtualization - an introduction Gordon Ross Computing Service.
1 Virtualization "Virtualization software makes it possible to run multiple operating systems and multiple applications on the same server at the same.
XEN – The Art of Virtualisation. So what is Virtualisation? ● Makes use of spare capacity ● Run multiple instances of OSes simultaneously ● Multitasking.
Virtualization-optimized architectures
Virtualization for Cloud Computing
Introduction to Virtualization
Virtualization.
Virtual Machine Monitors
L2- Virtualization Technology
Virtualization Dr. Michael L. Collard
Virtualization Virtualization is the creation of substitutes for real resources – abstraction of real resources Users/Applications are typically unaware.
Virtualization overview
Virtual Servers.
Running other code under LINUX
Virtualization Virtualization is the creation of substitutes for real resources – abstraction of real resources Users/Applications are typically unaware.
OS Virtualization.
Virtualization Techniques
Virtual machines benefits
Computer Security: Art and Science, 2nd Edition
Full and Para Virtualization
Xen and the Art of Virtualization
CSE 451: Operating Systems Autumn Module 24 Virtual Machine Monitors
CS295: Modern Systems Virtualization
Hypervisor A hypervisor or virtual machine monitor (VMM) is computer software, firmware or hardware that creates and runs virtual machines. A computer.
Presentation transcript:

LINUX Virtualization Running other code under LINUX

Environment Virtualization Citrix/MetaFrame – Virtual desktop under Windows NT. aka Windows Remote Desktop Protocol VNC, Dameware – virtual console. XWindows – virtual console Mac OS RDP – same as Windows. WUBI.EXE

Hardware Emulation IBM – Virtual Machine (VM) OS Also using code: Processor virtualization Instruction set virtualization. Slow. Usually requires OS (re-)installation Examples: KVM (uses QEMU), Solaris Domains, DOSBox, DOSEmu, WINE

Processor Virtualization “Native” or full virtualization: virtual machine that mediates between the guest operating systems and the native hardware. Certain protected instructions must be trapped and handled within the hypervisor because the underlying hardware isn't owned by an operating system but is instead shared by it through the hypervisor. This form usually requires specially virtualization CPU processors (Intel, AMD) for performance. The only constraint is that the operating system must support the underlying hardware. Close to hardware-level performance. The biggest advantage of full virtualization is that a guest OS can run unmodified. OS is usually “ported” to the hypervisor machine. Examples: VMWare.

Processor Virtualization Paravirtualization: uses a hypervisor for shared access to the underlying hardware but integrates virtualization-aware code into the operating system itself. Obviates the need for any recompilation or trapping because the operating systems themselves cooperate in the virtualization process. Also requires specialized CPU hardware but not to the same level as “native” virtualization. Close to “native” performance. Guest OS is (re-)installed to run virtualized. Examples: LINUX Xen, User Mode LINUX (UML), Microsoft Virtual PC.

OS Level Virtualization OS Level Virtualization: Virtualizes servers on top of the operating system itself - uses a single operating system and simply isolates the independent virtual servers from one another (code, memory, filesystems). Doesn’t use special virtualization hardware Uses a lot of underlying OS resources – memory, filesystem space. Original concept – BSD “chroot jail” Examples: LINUX: lxc “containers”. Solaris “Zones”

Hardware support for virtualization IA-32 (Intel x86) supports four rings of protection, where level 0 (the highest privilege) typically runs the operating system, levels 1 and 2 support operating system services, and level 3 (the lowest level) supports applications. In IA-32 (x86) architecture certain privileged-mode instructions do not trap, and can return different results based upon the mode. This is problematic when attempting to virtualize different operating systems at different levels. Hardware vendors have recognized this shortcoming (and others), and have produced new designs that support and accelerate virtualization. Intel’s new virtualization technology supports hypervisors for both the x86 32-bit (VT-x) and Itanium® (VT-I) 64-bit architectures. The VT-x supports two new forms of operation, one for the VMM (root) and one for guest operating systems (non-root). The root form is fully privileged, while the non- root form is deprivileged (even for ring 0). AMD is producing hardware-assisted virtualization technology, under the name Pacifica which Pacifica maintains a control block for guest operating systems that are saved on execution of special instructions. This allows a virtual machine (and its associated guest operating system) to run until the VMM regains control. Pacifica also amends address translation with host and guest memory management unit (MMU) tables. These hardware virtualization can be used by a number of virtualization techniques, including Xen, VMware, User-mode Linux, and others.

Virtualization Products Bochs and QEMU are PC emulators that allow operating systems such as Windows or Linux to be run in the user-space of a Linux operating system. VMware is a popular commercial full-virtualization solution that can virtualize unmodified operating systems. Xen is an open source paravirtualization solution that requires modifications to the guest operating systems but achieves near native performance by collaborating with the hypervisor. Microsoft Virtual PC is a paravirtualization virtual machine approach. User-mode Linux (UML) is another paravirtualization solution that is open source. Each guest operating system executes as a process of the host operating system. coLinux, or Cooperative Linux, is a virtualization solution that allows two operating systems to cooperatively share the underlying hardware. Linux-Vserver is an operating system-level virtualization solution for GNU/Linux systems with secure isolation of independent guest servers. The Linux KVM is virtualization technology that has been integrated into the mainline Linux kernel (not KVM kernel, but does require PAE support). Runs as a single kernel loadable module, a Linux kernel running on virtualization-capable hardware is able to act as a hypervisor and support unmodified Linux and Windows guest operating systems.