AN INTRODUCTION TO PORTFOLIO MANAGEMENT

Slides:



Advertisements
Similar presentations
Chapter 11 Optimal Portfolio Choice
Advertisements

Introduction The relationship between risk and return is fundamental to finance theory You can invest very safely in a bank or in Treasury bills. Why.
Diversification and Risky Asset Allocation
An Introduction to Asset Pricing Models
FIN352 Vicentiu Covrig 1 Asset Pricing Models (chapter 9)
Chapter 8 Portfolio Selection.
Lecture Presentation Software to accompany Investment Analysis and Portfolio Management Seventh Edition by Frank K. Reilly & Keith C. Brown Chapter.
Efficient Diversification
Choosing an Investment Portfolio
AN INTRODUCTION TO PORTFOLIO MANAGEMENT
Introduction In the next three chapters, we will examine different aspects of capital market theory, including: Bringing risk and return into the picture.
CHAPTER SIX THE PORTFOLIO SELECTION PROBLEM. INTRODUCTION n THE BASIC PROBLEM: given uncertain outcomes, what risky securities should an investor own?
Chapter 6 An Introduction to Portfolio Management.
Vicentiu Covrig 1 Portfolio management. Vicentiu Covrig 2 “ Never tell people how to do things. Tell them what to do and they will surprise you with their.
FIN352 Vicentiu Covrig 1 Risk and Return (chapter 4)
1 Chapter 09 Characterizing Risk and Return McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
FIN638 Vicentiu Covrig 1 Portfolio management. FIN638 Vicentiu Covrig 2 How Finance is organized Corporate finance Investments International Finance Financial.
Portfolio Management & Investment Analysis
Diversification and Portfolio Analysis Investments and Portfolio Management MB 72.
RISK AND RETURN Rajan B. Paudel. Learning Outcomes By studying this unit, you will be able to: – Understand various concepts of return and risk – Measure.
Chapter 2 Diversification and Risky Asset Allocation
11-1 Copyright © 2011 by the McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
 Lecture #8.  The course assumes little prior applied knowledge in the area of finance.  References  Kristina (2010) ‘Investment Analysis and Portfolio.
© 2012 Cengage Learning. All Rights Reserved. May not scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. Chapter.
Portfolio Management Lecture: 26 Course Code: MBF702.
Risk Premiums and Risk Aversion
Lecture Presentation Software to accompany Investment Analysis and Portfolio Management Eighth Edition by Frank K. Reilly & Keith C. Brown Chapter 7.
Diversification and Portfolio Risk Asset Allocation With Two Risky Assets 6-1.
The Capital Asset Pricing Model (CAPM)
Version 1.2 Copyright © 2000 by Harcourt, Inc. All rights reserved. Requests for permission to make copies of any part of the work should be mailed to:
Portfolio Management-Learning Objective
Chapter 8 AN INTRODUCTION TO PORTFOLIO MANAGEMENT.
Calculating Expected Return
Lecture Presentation Software to accompany Investment Analysis and Portfolio Management Seventh Edition by Frank K. Reilly & Keith C. Brown Chapter 7.
Lecture Presentation Software to accompany Investment Analysis and Portfolio Management Eighth Edition by Frank K. Reilly & Keith C. Brown Chapter 7.
Chapter McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. 11 Diversification and Risky Asset Allocation.
Some Background Assumptions Markowitz Portfolio Theory
Investment Analysis and Portfolio Management Chapter 7.
McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 21 A Basic Look at Portfolio Management and Capital.
Chapter 8 Portfolio Selection.
Risk and Capital Budgeting Chapter 13. Chapter 13 - Outline What is Risk? Risk Related Measurements Coefficient of Correlation The Efficient Frontier.
Copyright © 2000 by Harcourt, Inc. All rights reserved. Introduction In the next three chapters (and part of Ch. 22, together with Chs. 2 – 5 of Haugen),
Return and Risk: The Capital-Asset Pricing Model (CAPM) Expected Returns (Single assets & Portfolios), Variance, Diversification, Efficient Set, Market.
© 2009 McGraw-Hill Ryerson Limited 2-1 Chapter 2 Diversification and Asset Allocation  Expected Return and Variances  Portfolios  Diversification and.
Chapter Diversification and Risky Asset Allocation McGraw-Hill/IrwinCopyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved. 11.
0 Portfolio Managment Albert Lee Chun Construction of Portfolios: Introduction to Modern Portfolio Theory Lecture 3 16 Sept 2008.
Chapter 08 Risk and Rate of Return
FIN437 Vicentiu Covrig 1 Portfolio management Optimum asset allocation Optimum asset allocation (see chapter 7 Bodie, Kane and Marcus)
Efficient Diversification CHAPTER 6. Diversification and Portfolio Risk Market risk –Systematic or Nondiversifiable Firm-specific risk –Diversifiable.
Investment Analysis and Portfolio Management First Canadian Edition By Reilly, Brown, Hedges, Chang 6.
Risk and Return: Portfolio Theory and Assets Pricing Models
Optimal portfolios and index model.  Suppose your portfolio has only 1 stock, how many sources of risk can affect your portfolio? ◦ Uncertainty at the.
1 Estimating Return and Risk Chapter 7 Jones, Investments: Analysis and Management.
Chapter 7 Expected Return and Risk. Explain how expected return and risk for securities are determined. Explain how expected return and risk for portfolios.
Return and Risk: The Asset-Pricing Model: CAPM and APT.
INTRODUCTION For a given set of securities, any number of portfolios can be constructed. A rational investor attempts to find the most efficient of these.
Asset Pricing Models CHAPTER 8. What are we going to learn in this chaper?
1 THE FUTURE: RISK AND RETURN. 2 RISK AND RETURN If the future is known with certainty, all investors will hold assets offering the highest rate of return.
Managing Portfolios: Theory
Chapter 7 An Introduction to Portfolio Management.
8-1 Chapter 8 Charles P. Jones, Investments: Analysis and Management, Tenth Edition, John Wiley & Sons Prepared by G.D. Koppenhaver, Iowa State University.
7-1 Chapter 7 Charles P. Jones, Investments: Analysis and Management, Tenth Edition, John Wiley & Sons Prepared by G.D. Koppenhaver, Iowa State University.
Chapter McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. 11 Diversification and Risky Asset Allocation.
FIN437 Vicentiu Covrig 1 Portfolio management Optimum asset allocation Optimum asset allocation (see chapter 8 RN)
1 INVESTMENT ANALYSIS & PORTFOLIO MANAGEMENT Lecture # 35 Shahid A. Zia Dr. Shahid A. Zia.
INVESTMENTS: Analysis and Management Second Canadian Edition
Risk and Return.
Chapter 19 Jones, Investments: Analysis and Management
Portfolio Selection Chapter 8
Saif Ullah Lecture Presentation Software to accompany Investment Analysis and.
Presentation transcript:

AN INTRODUCTION TO PORTFOLIO MANAGEMENT Chapter 8 AN INTRODUCTION TO PORTFOLIO MANAGEMENT

Chapter 8 Questions What do we mean be risk aversion, and what evidence indicates that investors are generally averse to risk? What are the basic assumptions behind the Markowitz portfolio theory? What do we mean by risk, and what are some of the measures of risk used in investments? How does one compute the expected rate of return for an individual risky asset or a portfolio of assets?

Chapter 8 Questions How does one compute the standard deviation of rates of return for an individual risky asset? What do we mean by the covariance between rates of return, and how is it computed? What is the relationship between covariance and correlation?

Chapter 8 Questions What is the formula for the standard deviation for a portfolio of risky assets, and how does it differ from the standard deviation of an individual risky asset? Given the formula for the standard deviation of a portfolio, why and how does one diversify a portfolio? What happens to the standard deviation of a portfolio when we change the correlation between the assets in the portfolio?

Chapter 8 Questions What is the risk-return efficient frontier of risky assets? Is it reasonable for alternative investors to select different portfolios from the portfolios on the efficient frontier? What determines which portfolio on the efficient frontier is selected by an individual investor?

Background Assumptions As an investor you want to maximize the returns for a given level of risk. Your portfolio includes all of your assets, not just financial assets The relationship between the returns for assets in the portfolio is important. A good portfolio is not simply a collection of individually good investments.

Risk Aversion Portfolio theory assumes that investors are averse to risk Given a choice between two assets with equal expected rates of return, risk averse investors will select the asset with the lower level of risk It also means that a riskier investment has to offer a higher expected return or else nobody will buy it

Are investors risk averse? The popularity of insurance of various types attests to risk aversion Yield on bonds increase with risk classifications from AAA to AA to A…., indicating that investors require risk premiums as compensation Experimental psychology also confirms that humans tend to be risk averse

Are investors always risk averse? Risk preference may have to do with amount of money involved - risking only small amounts. Trips to the casino might seem to refute risk aversion, but realize that gaming is best thought of as entertainment, not investing

Definition of Risk One definition: Uncertainty of future outcomes Alternative definition: The probability of an adverse outcome We will discuss several measures of risk that are used in developing portfolio theory

Markowitz Portfolio Theory Derives the expected rate of return for a portfolio of assets and an expected risk measure Markowitz demonstrated that the variance of the rate of return is a meaningful measure of portfolio risk under reasonable assumptions The portfolio variance formula shows how to effectively diversify a portfolio

Markowitz Portfolio Theory Assumptions Investors consider each investment alternative as being presented by a probability distribution of expected returns over some holding period. Investors minimize one-period expected utility, and their utility curves demonstrate diminishing marginal utility of wealth. Investors estimate the risk of the portfolio on the basis of the variability of expected returns.

Markowitz Portfolio Theory Assumptions Investors base decisions solely on expected return and risk, so their utility curves are a function of expected return and the expected variance (or standard deviation) of returns only. For a given risk level, investors prefer higher returns to lower returns. Similarly, for a given level of expected returns, investors prefer less risk to more risk.

Markowitz Portfolio Theory Under these five assumptions, a single asset or portfolio of assets is efficient if no other asset or portfolio of assets offers higher expected return with the same (or lower) risk, or lower risk with the same (or higher) expected return.

Alternative Measures of Risk Variance or standard deviation of expected return (Main focus) Based on deviations from the mean return Larger values indicate greater risk Other measures Range of returns Returns below expectations Semivariance – measures deviations only below the mean

Expected Rates of Return Individual risky asset (Chapter 2) Weighted average of all possible returns Probabilities serve as the weights Portfolio Weighted average of expected returns (Ri) for the individual investments in the portfolio Percentages invested in each asset (wi) serve as the weights E(Rport) = S wi Ri

Variance & Standard Deviation of Returns Individual Investment (Chapter 2) Standard deviation is the positive square root of the variance Both measures are based on deviations of each possible return (Ri) from the expected return (E(R)) Variance: s2 = SPi(Ri-E(R))2

Variance & Standard Deviation of Returns Before calculating the portfolio variance and standard deviation, several other measures need to be understood Covariance Measures the extent to which two variables move together For two assets, i and j, the covariance of rates of return is defined as: Covij = E{[Ri,t - E(Ri)][Rj,t - E(Rj)]}

Variance & Standard Deviation of Returns Correlation coefficient Values of the correlation coefficient (r) go from -1 to +1 Standardized measure of the linear relationship between two variables rij = Covij/(sisj) Covij= covariance of returns for securities i and j si= standard deviation of returns for security i sj= standard deviation of returns for security j

Portfolio Standard Deviation Formula

Portfolio Standard Deviation Calculation The portfolio standard deviation is a function of: The variances of the individual assets that make up the portfolio The covariances between all of the assets in the portfolio The larger the portfolio, the more the impact of covariance and the lower the impact of the individual security variance

Implications for Portfolio Formation Assets differ in terms of expected rates of return, standard deviations, and correlations with one another While portfolios give average returns, they give lower risk Diversification works! Even for assets that are positively correlated, the portfolio standard deviation tends to fall as assets are added to the portfolio

Implications for Portfolio Formation Combining assets together with low correlations reduces portfolio risk more The lower the correlation, the lower the portfolio standard deviation Negative correlation reduces portfolio risk greatly Combining two assets with perfect negative correlation reduces the portfolio standard deviation to nearly zero

Estimation Issues Results of portfolio analysis depend on accurate statistical inputs Estimates of Expected returns Standard deviations Correlation coefficients With 100 assets, 4,950 correlation estimates Estimation risk refers to potential errors

Estimation Issues With assumption that stock returns can be described by a single market model, the number of correlations required reduces to the number of assets Single index market model: bi = the slope coefficient that relates the returns for security i to the returns for the aggregate stock market Rm = the returns for the aggregate stock market

The Efficient Frontier The efficient frontier represents that set of portfolios with the maximum rate of return for every given level of risk, or the minimum risk for every level of return Frontier will be portfolios of investments rather than individual securities Exceptions being the asset with the highest return and the asset with the lowest risk

Efficient Frontier and Alternative Portfolios B E(R) A C Standard Deviation of Return

The Efficient Frontier and Portfolio Selection Any portfolio that plots “inside” the efficient frontier (such as point C) is dominated by other portfolios For example, Portfolio A gives the same expected return with lower risk, and Portfolio B gives greater expected return with the same risk Would we expect all investors to choose the same efficient portfolio? No, individual choices would depend on relative appetites return as opposed to risk

The Efficient Frontier and Investor Utility An individual investor’s utility curve specifies the trade-offs she is willing to make between expected return and risk Each utility curve represent equal utility; curves higher and to the left represent greater utility (more return with lower risk) The interaction of the individual’s utility and the efficient frontier should jointly determine portfolio selection

The Efficient Frontier and Investor Utility The optimal portfolio has the highest utility for a given investor It lies at the point of tangency between the efficient frontier and the utility curve with the highest possible utility

Selecting an Optimal Risky Portfolio U3’ U2’ U1’ Y U3 X U2 U1

Investor Differences and Portfolio Selection A relatively more conservative investor would perhaps choose Portfolio X On the efficient frontier and on the highest attainable utility curve A relatively more aggressive investor would perhaps choose Portfolio Y