Fall 2002CMSC 203 - Discrete Structures1 Let’s proceed to… Mathematical Reasoning.

Slides:



Advertisements
Similar presentations
Discrete Mathematics University of Jazeera College of Information Technology & Design Khulood Ghazal Mathematical Reasoning Methods of Proof.
Advertisements

Discrete Math Methods of proof 1.
Introduction to Proofs
Announcements Grading policy No Quiz next week Midterm next week (Th. May 13). The correct answer to the quiz.
Rules of Inferences Section 1.5. Definitions Argument: is a sequence of propositions (premises) that end with a proposition called conclusion. Valid Argument:
1 Section 1.5 Rules of Inference. 2 Definitions Theorem: a statement that can be shown to be true Proof: demonstration of truth of theorem –consists of.
February 26, 2015Applied Discrete Mathematics Week 5: Mathematical Reasoning 1 Addition of Integers Example: Add a = (1110) 2 and b = (1011) 2. a 0 + b.
Chapter 1: The Foundations: Logic and Proofs 1.1 Propositional Logic 1.2 Propositional Equivalences 1.3 Predicates and Quantifiers 1.4 Nested Quantifiers.
Chapter 3. Mathematical Reasoning 3.1 Methods of proof A theorem is a statement that can be shown to be true. A proof is to demonstrate that a theorem.
CSE115/ENGR160 Discrete Mathematics 01/26/12 Ming-Hsuan Yang UC Merced 1.
CS128 – Discrete Mathematics for Computer Science
Logic 3 Tautological Implications and Tautological Equivalences
Logic and Proof. Argument An argument is a sequence of statements. All statements but the first one are called assumptions or hypothesis. The final statement.
CSE115/ENGR160 Discrete Mathematics 01/31/12 Ming-Hsuan Yang UC Merced 1.
So far we have learned about:
Methods of Proof & Proof Strategies
February 25, 2002Applied Discrete Mathematics Week 5: Mathematical Reasoning 1 Addition of Integers How do we (humans) add two integers? Example: 7583.
Introduction to Proofs
1 Georgia Tech, IIC, GVU, 2006 MAGIC Lab Rossignac Lecture 03: PROOFS Section 1.5 Jarek Rossignac CS1050: Understanding.
CS 103 Discrete Structures Lecture 07b
Spring 2003CMSC Discrete Structures1 Let’s get started with... Logic !
March 3, 2015Applied Discrete Mathematics Week 5: Mathematical Reasoning 1Arguments Just like a rule of inference, an argument consists of one or more.
10/17/2015 Prepared by Dr.Saad Alabbad1 CS100 : Discrete Structures Proof Techniques(1) Dr.Saad Alabbad Department of Computer Science
1 Sections 1.5 & 3.1 Methods of Proof / Proof Strategy.
Proofs1 Advanced Discrete Mathematics Jim Skon. Proofs2  Definition: A theorem is a valid logical assertion which can be proved using other theorems.
Discrete Structures (DS)
2.3Logical Implication: Rules of Inference From the notion of a valid argument, we begin a formal study of what we shall mean by an argument and when such.
Chap 3 –A theorem is a statement that can be shown to be true –A proof is a sequence of statements to show that a theorem is true –Axioms: statements which.
1 Discrete Structures – CNS2300 Text Discrete Mathematics and Its Applications Kenneth H. Rosen (5 th Edition) Chapter 3 The Foundations: Logic and Proof,
資訊科學數學 7 : Proof, Number and Orders 陳光琦助理教授 (Kuang-Chi Chen)
Module #1 - Logic Based on Rosen, Discrete Mathematics & Its Applications. Prepared by (c) , Michael P. Frank. Modified By Mingwu Chen 1 Module.
Fall 2008/2009 I. Arwa Linjawi & I. Asma’a Ashenkity 11 The Foundations: Logic and Proofs Rules of inference.
CSci 2011 Discrete Mathematics Lecture 4 CSci 2011.
CS104:Discrete Structures Chapter 2: Proof Techniques.
Foundations of Discrete Mathematics Chapter 1 By Dr. Dalia M. Gil, Ph.D.
Proof Techniques Chuck Cusack
Discrete Mathematical Structures: Theory and Applications 1 Logic: Learning Objectives  Learn about statements (propositions)  Learn how to use logical.
CSci 2011 Discrete Mathematics Lecture 5 CSci 2011.
Chapter 1, Part III: Proofs With Question/Answer Animations Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without.
Section 1.7. Section Summary Mathematical Proofs Forms of Theorems Direct Proofs Indirect Proofs Proof of the Contrapositive Proof by Contradiction.
March 3, 2016Introduction to Artificial Intelligence Lecture 12: Knowledge Representation & Reasoning I 1 Back to “Serious” Topics… Knowledge Representation.
Spring 2003CMSC Discrete Structures1 Let’s get started with... Logic !
Chapter 1 Logic and proofs
Applied Discrete Mathematics Week 5: Mathematical Reasoning
CSE15 Discrete Mathematics 01/30/17
Discrete Mathematics Logic.
Applied Discrete Mathematics Week 5: Mathematical Reasoning
Proposition & Predicates
Proof Techniques.
Discrete Mathematics and its Applications
Module #10: Proof Strategies
The Foundations: Logic and Proofs
CS201: Data Structures and Discrete Mathematics I
Mathematical Reasoning
Methods of Proof. Methods of Proof Definitions A theorem is a valid logical assertion which can be proved using Axioms: statements which are given.
Week #6 – 30 September / 2/4 October 2002 Prof. Marie desJardins
CMSC Discrete Structures
CS 220: Discrete Structures and their Applications
Applied Discrete Mathematics Week 1: Logic
Back to “Serious” Topics…
Inference Rules: Tautologies
Discrete Mathematics Logic.
Information Technology Department SKN-SITS,Lonavala.
Module #10: Proof Strategies
Foundations of Discrete Mathematics
Mathematical Reasoning
Discrete Mathematics and its Applications
Introduction to Proofs
CS201: Data Structures and Discrete Mathematics I
Rules of inference Section 1.5 Monday, December 02, 2019
Presentation transcript:

Fall 2002CMSC Discrete Structures1 Let’s proceed to… Mathematical Reasoning

Fall 2002CMSC Discrete Structures2 Mathematical Reasoning We need mathematical reasoning to determine whether a mathematical argument is correct or incorrect and determine whether a mathematical argument is correct or incorrect and construct mathematical arguments. construct mathematical arguments. Mathematical reasoning is not only important for conducting proofs and program verification, but also for artificial intelligence systems (drawing inferences).

Fall 2002CMSC Discrete Structures3Terminology An axiom is a basic assumption about mathematical structured that needs no proof. We can use a proof to demonstrate that a particular statement is true. A proof consists of a sequence of statements that form an argument. The steps that connect the statements in such a sequence are the rules of inference. Cases of incorrect reasoning are called fallacies. A theorem is a statement that can be shown to be true.

Fall 2002CMSC Discrete Structures4Terminology A lemma is a simple theorem used as an intermediate result in the proof of another theorem. A corollary is a proposition that follows directly from a theorem that has been proved. A conjecture is a statement whose truth value is unknown. Once it is proven, it becomes a theorem.

Fall 2002CMSC Discrete Structures5 Rules of Inference Rules of inference provide the justification of the steps used in a proof. One important rule is called modus ponens or the law of detachment. It is based on the tautology (p  (p  q))  q. We write it in the following way: p p  q ____  q q q q The two hypotheses p and p  q are written in a column, and the conclusion below a bar, where  means “therefore”.

Fall 2002CMSC Discrete Structures6 Rules of Inference The general form of a rule of inference is: p 1 p 1 p 2 p 2... p n p n____  q q q q The rule states that if p 1 and p 2 and … and p n are all true, then q is true as well. These rules of inference can be used in any mathematical argument and do not require any proof.

Fall 2002CMSC Discrete Structures7 Rules of Inference p_____  pq pq pq pq Addition pq pq pq pq_____  p p p p Simplification p q_____  pq pq pq pq Conjunction q q q q pq pq pq pq_____  p p p p Modus tollens pq pq pq pq qr qr qr qr_____  pr pr pr pr Hypothetical syllogism pq pq pq pq p p p p_____  q q q q Disjunctive syllogism

Fall 2002CMSC Discrete Structures8Arguments Just like a rule of inference, an argument consists of one or more hypotheses and a conclusion. We say that an argument is valid, if whenever all its hypotheses are true, its conclusion is also true. However, if any hypothesis is false, even a valid argument can lead to an incorrect conclusion.

Fall 2002CMSC Discrete Structures9ArgumentsExample: “If 101 is divisible by 3, then is divisible by is divisible by 3. Consequently, is divisible by 9.” Although the argument is valid, its conclusion is incorrect, because one of the hypotheses is false (“101 is divisible by 3.”). If in the above argument we replace 101 with 102, we could correctly conclude that is divisible by 9.

Fall 2002CMSC Discrete Structures10Arguments Which rule of inference was used in the last argument? p: “101 is divisible by 3.” q: “101 2 is divisible by 9.” p p  q p  q_____  q Modus ponens Unfortunately, one of the hypotheses (p) is false. Therefore, the conclusion q is incorrect.

Fall 2002CMSC Discrete Structures11Arguments Another example: “If it rains today, then we will not have a barbeque today. If we do not have a barbeque today, then we will have a barbeque tomorrow. Therefore, if it rains today, then we will have a barbeque tomorrow.” This is a valid argument: If its hypotheses are true, then its conclusion is also true.

Fall 2002CMSC Discrete Structures12Arguments Let us formalize the previous argument: p: “It is raining today.” q: “We will not have a barbecue today.” r: “We will have a barbecue tomorrow.” So the argument is of the following form: p  q p  q q  r q  r_____  p  r Hypothetical syllogism

Fall 2002CMSC Discrete Structures13Arguments Another example: Gary is either intelligent or a good actor. If Gary is intelligent, then he can count from 1 to 10. Gary can only count from 1 to 2. Therefore, Gary is a good actor. i: “Gary is intelligent.” a: “Gary is a good actor.” c: “Gary can count from 1 to 10.”

Fall 2002CMSC Discrete Structures14Arguments i: “Gary is intelligent.” a: “Gary is a good actor.” c: “Gary can count from 1 to 10.” Step 1:  cHypothesis Step 2: i  c Hypothesis Step 3:  i Modus tollens Steps 1 & 2 Step 4: a  iHypothesis Step 5: aDisjunctive Syllogism Steps 3 & 4 Conclusion: a (“Gary is a good actor.”)

Fall 2002CMSC Discrete Structures15Arguments Yet another example: If you listen to me, you will pass CS 320. You passed CS 320. Therefore, you have listened to me. Is this argument valid? No, it assumes ((p  q)  q)  p. This statement is not a tautology. It is false if p is false and q is true.

Fall 2002CMSC Discrete Structures16 Rules of Inference for Quantified Statements  x P(x)  x P(x)__________  P(c) if c  U Universal instantiation P(c) for an arbitrary c  U ___________________   x P(x) Universal generalization  x P(x)  x P(x)______________________  P(c) for some element c  U Existential instantiation P(c) for some element c  U ____________________   x P(x) Existential generalization

Fall 2002CMSC Discrete Structures17 Rules of Inference for Quantified Statements Example: Every UMB student is a genius. George is a UMB student. Therefore, George is a genius. U(x): “x is a UMB student.” G(x): “x is a genius.”

Fall 2002CMSC Discrete Structures18 Rules of Inference for Quantified Statements The following steps are used in the argument: Step 1:  x (U(x)  G(x))Hypothesis Step 2: U(George)  G(George)Univ. instantiation using Step 1  x P(x)  x P(x)__________  P(c) if c  U Universal instantiation Step 3: U(George)Hypothesis Step 4: G(George)Modus ponens using Steps 2 & 3

Fall 2002CMSC Discrete Structures19 Proving Theorems Direct proof: An implication p  q can be proved by showing that if p is true, then q is also true. Example: Give a direct proof of the theorem “If n is odd, then n 2 is odd.” Idea: Assume that the hypothesis of this implication is true (n is odd). Then use rules of inference and known theorems to show that q must also be true (n 2 is odd).

Fall 2002CMSC Discrete Structures20 Proving Theorems n is odd. Then n = 2k + 1, where k is an integer. Consequently, n 2 = (2k + 1) 2. = 4k 2 + 4k + 1 = 4k 2 + 4k + 1 = 2(2k 2 + 2k) + 1 = 2(2k 2 + 2k) + 1 Since n 2 can be written in this form, it is odd.

Fall 2002CMSC Discrete Structures21 Proving Theorems Indirect proof: An implication p  q is equivalent to its contra- positive  q   p. Therefore, we can prove p  q by showing that whenever q is false, then p is also false. Example: Give an indirect proof of the theorem “If 3n + 2 is odd, then n is odd.” Idea: Assume that the conclusion of this implication is false (n is even). Then use rules of inference and known theorems to show that p must also be false (3n + 2 is even).

Fall 2002CMSC Discrete Structures22 Proving Theorems n is even. Then n = 2k, where k is an integer. It follows that 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1) Therefore, 3n + 2 is even. We have shown that the contrapositive of the implication is true, so the implication itself is also true (If 2n + 3 is odd, then n is odd).