Controlling the thickness of CuCl thin films and improving their quality by means of MBE method Ashida lab. M1 Kamizono Kenta.

Slides:



Advertisements
Similar presentations
Thermal properties of laser crystal Rui Zhang ACCL Division V, RF-Gun Group Feb 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Advertisements

Collinear interaction of photons with orbital angular momentum Apurv Chaitanya N Photonics science Laboratory, PRL.
Ashida lab Toyota yusuke
Optical properties of infrared emission quaternary InGaAsP epilayers Y. C. Lee a,b, J. L. Shen a, and W. Y. Uen b a. Department of Computer Science and.
Terahertz spectroscopy of electromagnons excitation in a hexaferrite Ba 2 Mg 2 Fe 12 O 22 Ashida Lab. Tadataka Saito Phy.Rev.B 83, (2011) Phy.Rev.
COST Action MP0805 Meeting, Istanbul, April 12-13, 2010 University of Nottingham, UK Effects of Hydrogen Irradiation on Deep Levels in MBE Grown Dilute.
Observation of Coherent molecular oscillation : Herzberg-Teller type Wave Packet Motion in Porphyrin J-aggregates MIYASAKA Lab. Tetsuro KATAYAMA.
Generation of short pulses
Alternative representation of QW Phase accumulation model.
Spectroscopy of the instantaneous all-optical switching nonlinearity of thin films  F.P. Strohkendl, R.J. Larsen, L.R. Dalton, University of Southern.
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Narrow transitions induced by broad band pulses  |g> |f> Loss of spectral resolution.
Low Temperature Photon Echo Measurements of Organic Dyes in Thin Polymer Films Richard Metzler ‘06, Eliza Blair ‘07, and Carl Grossman, Department of Physics.
Pump-Probe Spectroscopy Chelsey Dorow Physics 211a.
Guillaume TAREL, PhC Course, QD EMISSION 1 Control of spontaneous emission of QD using photonic crystals.
Metamaterial Emergence of novel material properties Ashida Lab Masahiro Yoshii PRL 103, (2009)
Ultrabroadband terahertz generation using DAST single crystal
Photo-excited carrier dynamics revealed with terahertz pump-probe spectroscopy for opposite travelling direction of excitation pulse and terahertz pulse.
Quantum Dots. Optical and Photoelectrical properties of QD of III-V Compounds. Alexander Senichev Physics Faculty Department of Solid State Physics
Optical trapping of quantum dots in air and helium gas KAWAI Ryoichi Ashida Lab. 2013/10/30 M1 colloquium.
Optical fabrication and Optical manipulation of semiconductor nanoparticles Ashida lab. Nawaki Yohei.
Optical properties and carrier dynamics of self-assembled GaN/AlGaN quantum dots Ashida lab. Nawaki Yohei Nanotechnology 17 (2006)
Ultrafast Experiments Hangwen Guo Solid State II Department of Physics & Astronomy, The University of Tennessee.
ITOH Lab. Hiroaki SAWADA
Optical Characterization of GaN-based Nanowires : From Nanometric Scale to Light Emitting Devices A-L. Bavencove*, E. Pougeoise, J. Garcia, P. Gilet, F.
High efficiency generation and detection of terahertz pulses using laser pulses at tele- communication wavelengths A.Schneider et al. OPTICS EXPRESS 5376/Vol.14,No.12(2006)
Nano-scaled domain in the strongly correlated electron materials ( 強相関電子系におけるナノスケール電子相ドメイン ) Tanaka Laboratory Kenichi Kawatani First M1 colloquium.
Charge Carrier Related Nonlinearities
Ultrabroadband detection of THz radiation and the sensitivity estimation of photoconductive antenna Itoh lab Michitaka Bitoh H. Shimosato et al. Ultrafast.
スペクトルおよび 時間分解光誘起ファラデー回転による 磁気ポーラロンスピン配向過程 Spin polarization dynamics on magnetic polaron by means of spectrum- and time-resolved Faraday rotation 橋本 佑介、三野.
Observation of Excited Biexciton States in CuCl Quantum Dots : Control of the Quantum Dot Energy by a Photon Itoh Lab. Hiroaki SAWADA Michio IKEZAWA and.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Achromatic waveplate in THz frequency region based on the structured parallel metal plates Ashida Lab Noriyuki Mukai.
M. Zamfirescu, M. Ulmeanu, F. Jipa, O. Cretu, A. Moldovan, G. Epurescu, M. Dinescu, R. Dabu National Institute for Laser Plasma and Radiation Physics,
Ultrafast Carrier Dynamics in Graphene M. Breusing, N. Severin, S. Eilers, J. Rabe and T. Elsässer Conclusion information about carrier distribution with10fs.
Measurement of nano-scale physical characteristics in VO 2 nano-wires by using Scanning Probe Microscope (SPM) Tanaka lab. Kotaro Sakai a VO 2 nano-wire.
Micro-optical studies of optical properties and electronic states of ridge quantum wire lasers Presented at Department of Physics, Graduate.
A diamond nanowire single- photon source IIDA Atsushi Miyasaka lab. nature nanotechnology, 2010, 5,
Generation and detection of ultrabroadband terahertz radiation
Observation of ultrafast response by optical Kerr effect in high-quality CuCl thin films Asida Lab. Takayuki Umakoshi.
D.-A. Luh, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, S. Harvey, R. E. Kirby, T. Maruyama, and C. Y. Prescott Stanford Linear Accelerator.
Itoh Lab. M1 Masataka YASUDA
Fourier-transform coherent anti-Stokes Raman scattering microscopy Jennifer P. Ogilvie et al. Opt. Lett. 31, 480 (2006) Kazuya MORI MIYASAKA Lab.
Photoluminescence-excitation spectra on n-type doped quantum wire
Lesson learned in Linac Commissioning Here I introduce 3 kinds of beam loss generated by following issues 1.Intra beam stripping (IBSt) in ACS 2.Dark.
Terahertz Applications by THz Time Domain Spectroscopy
光誘起キャリア緩和ダイナミクスおよびその偏光特性
Observation of ultrafast nonlinear response due to coherent coupling between light and confined excitons in a ZnO crystalline film Ashida Lab. Subaru Saeki.
Resonant medium: Up to four (Zn,Cd)Se quantum wells. Luminescence selection is possible with a variation of the Cd-content or the well width. The front.
Sample : GaAs (8nm) / Al 0.3 Ga 0.7 As (10nm) ×20 multiple quantum wells Light source : Mode-locked femtosecond Ti-sapphire laser Detection : Balancing.
1 Careful study of Ultrafast Magneto-Optics ITOH Lab. Yoshitaka Sakamoto ( 坂本 圭隆 ) [Referenece] “Ultrafast Magneto-Optics in Nickel: Magnetism or Optics?”
Femtosecond Laser Spectroscopy of C 60 Nieuwegein, The Netherlands August 21, 2001 Eleanor Campbell, Göteborg University & Chalmers, Sweden R.D. Levine,
Itoh Laboratory Masataka Yasuda
Pulsed Propagation of Polariton Luminescence Ashida Lab. Kenta Kamizono M. Kuwata, T. Kuga, H. Akiyama, T. Hirano, and M. Matsuoka Phys. Rev. Lett. 61.
Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and.
Tokyo Institute of Technology Hiroyuki Kawasaki, Asao Mizoguchi, Hideto Kanamori High Resolution Infrared Spectroscopy of CH 3 F-(ortho-H 2 ) n cluster.
Third-order optical nonlinearity in ZnO microcrystallite thin films Weili Zhang, H. Wang, K. S. Wong,a) Z. K. Tang, and G. K. L. Wong accepted for publication.
Nanolithography Using Bow-tie Nanoantennas Rouin Farshchi EE235 4/18/07 Sundaramurthy et. al., Nano Letters, (2006)
超平坦 GaAs 量子井戸の発光像 とスペクトル計測 Ji-Won Oh , Masahiro Yoshita , Hirotake Itoh , Hidefumi Akiyama, Loren Pfeiffer A , Ken West A Institute for solid state physics,
高精度分光を目指した CaH + の 生成とトラップ 富山大学・理 森脇喜紀. Spectroscopy of 40 CaH + the pure vibrational transition (v=0, J=0, F=1/2, M=±1/2) → (v=1, J=0, F=1/2, M=±1/2)
T-shaped quantum-wire laser M. Yoshita, Y. Hayamizu, Y. Takahashi, H. Itoh, T. Ihara, and H. Akiyama Institute for Solid State Physics, Univ. of Tokyo.
Conclusion QDs embedded in micropillars are fabricated by MOCVD and FIB post milling processes with the final quality factor about Coupling of single.
Quantum Efficiency Improvement of Polarized Electron Source using Strain compensated Superlattice photocathode N. Yamamoto 1, X.G. Jin 1, T. Miyauchi 3,
Qihuang Gong, Xiaoyong Hu, Jiaxiang Zhang, Hong Yang Department of Physics, Peking University, Beijing, P. R. China Composite Materials for Ultrafast and.
Multiphoton-gated cycloreversion reaction of a photochromic diarylethene derivative as revealed by femtosecond two-color and two-pulse excitation Miyasaka.
Ashida Laboratory Keita Miyagawa 1 Carrier dynamics evaluation in the photoelectric device from the terahertz electromagnetic wave.
© 1997, Angus Rockett Section I Evaporation.
Luminescent Periodic Microstructures for Medical Applications
MBE Growth of Graded Structures for Polarized Electron Emitters
Optical and Terahertz Spectroscopy of CdSe/ZnS Quantum Dots
Presentation transcript:

Controlling the thickness of CuCl thin films and improving their quality by means of MBE method Ashida lab. M1 Kamizono Kenta

Introduction ▫All-optical switching devices ▫Excitons and light in the high-quality system Background Previous results ▫Temperature dependence of DFWM spectrum Purpose Experimental results Summary Contents DFWM(Degenerated Four Wave Mixing): 縮退四光波混合

all-optical information processing superior performances than electronic communication devices transmission rate 伝送効率 energy efficiency エネルギー効 率 Introduction All-optical switching devices 光スイッチ Realization by nonlinear optical effect 非線形光学効果 Realization by nonlinear optical effect 非線形光学効果 Optical switching device Transient grating 過渡回折格子 Probe pulse Pump pulses Signals

Exciton Trade-off problem high efficient response 高効率応答 available in the micro crystal Introduction Exciton and trade-off problem Low consumption energy 低消費エネルギー resonance between light and excitons High response speed 高速応答 nonresonance between light and excitons + - Means of confining excitons in the micro crystal can break down this problem. Means of confining excitons in the micro crystal can break down this problem.

Spatial i nterplay between waves of excitons and light size << wavelength of light dominant interplay between the exciton of lowest state and light Oscillator strength increases with the system size. size << wavelength of light dominant interplay between the exciton of lowest state and light Oscillator strength increases with the system size. Dependence of the exciton radiative decay time in CuCl microcrystals n = 1 ExcitonLight n = 2 n = 4 n = 3 Ref: T. Itoh, M. Furumiya, and T. Ikehara, Solid State Commun. 73, 271 (1990). over LWA Introduction

Excitons and light in the high-quality system System where exciton wave functions are coherently extended to the whole volume Ultrafast response beyond LWA regime n = 1 ExcitonLight n = 2 n = 4 n = 3 ExcitonLight Introduction

Uncoupled excitonic modes Eigenenergy including the radiative shift Radiative width:Γn Real part of radiative corrections Imaginary part of radiative corrections τ :radiative decay time τ = ħ/2Γ n Radiative corrections ( 輻射補正 ) in the coupled system of photons and excitons Ref: H. Ishihara, J. Kishimoto and K. Sugihara, J. Lumin. 108, 343 (2004). Size dependence of radiative corrections for the CuCl Z3 exciton (theory) Introduction 330 nm

large exciton binding energy (200 meV) small exciton Boar radiance ( 0.7 nm) The center-of-mass confined effect of excitons is available. Cu + Cl - Zinc Blend E k Z3 Z1,2 direct transition semiconductor Property of CuCl Suitable material for research of the center- of-mass confined effect of excitons Suitable material for research of the center- of-mass confined effect of excitons Background

AFM image of CuCl thin film AFM image of high-quality CuCl thin film (by RHEED) CaF 2 cap layer 40 nm CaF 2 (111) substrate CaF 2 buffer layer CuCl layer 40 nm 1 mm e-beam-exposed Growth of high-quality CuCl thin films Surface morphology is extremely improved by electron beam irradiation. Lattice constant CaF nm CuCl nm Atomic Force Microscope ; AFM Background

Eigenenergy including the radiative shift Radiative width 261 nm k1k1 k2k2 2k1ー k22k1ー k2 2k2ー k12k2ー k1 Degenerated Four Wave Mixing ( DFWM ) Mode structures of DFWM spectrum in a high-quality CuCl thin film M. Ichimiya, M. Ashida, H. Yasuda, H. Ishihara, and T. Itoh, Phys. Rev. Lett. 103, (2009) Previous results

Temperature dependence of DFWM spectrum (68 nm) n = 3n = 2n = 1 Radiative width (meV) Calculated induced polarization spectra Calculated induced polarization spectra DFWM spectra The excitonic state with the largest radiative width may be observed at high temperatures.

Previous results Temperature dependence of DFWM spectrum (310 nm) M. Ichimiya, K. Mochizuki, M. Ashida, H Yasuda, H. Ishihara, and T. Itoh, Phys. Status Solidi B 248, 456–459 (2011) n = 8n = 7n = 6 Radiative width (meV) n = 5 19 DFWM signal can be observed at room temperature! DFWM signal can be observed at room temperature!

Deciding the condition of fabricating CuCl thin film by means of molecular beam epitaxy (MBE) method (329nm) Fabricating high-quality CuCl thin film on improving the quality Deciding the condition of fabricating CuCl thin film by means of molecular beam epitaxy (MBE) method (329nm) Fabricating high-quality CuCl thin film on improving the quality Purpose Realizing ultrafast radiative decay by the curtain thickness on large radiative width Enhancement of DFWM signal on improving the quality of CuCl thin film Realizing ultrafast radiative decay by the curtain thickness on large radiative width Enhancement of DFWM signal on improving the quality of CuCl thin film Realization of efficient and ultrafast radiative decay above room temperature Realization of efficient and ultrafast radiative decay above room temperature Light Exciton Light Exciton High-quality

melting pot substrate screen RHEED shutter pump oscillator crystal CaF 2 CuCl K-cell Experimental Procedure Vacuum 1.0×10 -6 ~ 9.0×10 -7 Pa CaF 2 (111) substrate CaF 2 buffer lay CuCl layer 40 nm 1 mm 329 nm CuCl layer substrate temperature : 50~150 0 C growth rate: 0.13 nm/s CuCl layer substrate temperature : 50~150 0 C growth rate: 0.13 nm/s CaF 2 buffer layer substrate temperature : C growth rate : 0.02 nm/s CaF 2 buffer layer substrate temperature : C growth rate : 0.02 nm/s Molecular Beam Epitaxy (MBE) method

results Transmission of normal incident light in the transparent region (150 ℃ ) crystal oscillator measured thickness substrate temperature ’10 12/09 150nm × nm 150 ℃ ‘10 12/23 162nm × nm 150 ℃ ‘11 01/13 172nm × nm 150 ℃ The difference is not same. Lower substrate temperature CuCl evaporate on the substrate again. CuCl evaporate on the substrate again. Light L n = 1 n = 2

results crystal oscillator measured thickness substrate temperature ’11 02/20 172nm × nm 80 ℃ ‘11 02/24 172nm × nm 130 ℃ The differences are same at lower substrate temperature. What quality does the CuCl thin film have Transmission of normal incident light in the transparent region (130 ℃ ) Light L n = 1 n = 2

AFM image (150 ℃ ) results crystal oscillator measured thickness substrate temperature ‘10 12/23 162nm × nm 150 ℃ ’11 01/13 172nm × nm 150 ℃ ’10 12/23 20 nm 3 μm ’11 01/13 20 nm 3 μm Surface morphology is extremely-good.

AFM image (under 130 ℃ ) results ’11 02/24 20 nm 3 μm ’11 02/20 20 nm 3 μm crystal oscillator measured thickness substrate temperature ’11 02/20 172nm × nm 80 ℃ ‘11 02/24 172nm × nm 130 ℃ Surface morphology is extremely-good. Which is better, high substrate temperature or low? Which is better, high substrate temperature or low?

Mode-locked Ti:sapphire laser Cryostat(6K) CCD Pulse width:110 fs Repetition:80 MHz wavelength : 387nm Monochro- mator Sample (CuCl) SHG crystal BS Optical fiber Degenerated Four Wave Mixing (DFWM) spectroscopy Experimental configuration

Photon energy of each peak is in good agreement. Sharp peak structures appear. DFWM spectrum in high-quality CuCl thin film (150 ℃ ) results measured thickness substrate temperature ’11 01/13 313nm 150 ℃ High-quality CuCl thin film High-quality CuCl thin film Thickness 313nm 6K 313 nm

DFWM spectrum depends on the thickness of CuCl thin film. Photon energy of some peak is in good agreement Peak structures with small radiative width don’t appear This CuCl thin film is not so high-quality DFWM spectrum in high-quality CuCl thin film (50 ℃ ) results measured thickness substrate temperature ‘11 02/21 235nm 50 ℃ High substrate temperature is important. Thickness 235nm 6K 235 nm

Summary Evaporation on the substrate of CuCl thin film Surface morphology DFWM spectrum thicknesssubstrate temperature Best condition 329nm 130 ℃

Film thickness dependence of calculated radiative decay time Film thickness dependence of calculated radiative width Radiative width and decay time (310 and 329nm) Previous results n=5 exciton maintains high efficient radiative decay beyond nonradiative decay. Optimizing the thickness of CuCl thin film will realize ultrafast radiative response than 10 fs.

Reflection High Energy Electron Diffraction ( RHEED) substrate e-beam e-beam-exposed CaF 2 cap layer 40 nm CaF 2 (111) substrate CaF 2 buffer layer CuCl layer 40 nm 1 mm

E-beam exposed F defection As GaAs Ga H. C. Lee et al. Japan J. Appl. Phys pp. L1834-L CaF 2 F Growth of high-quality CuCl thin films by e-beam exposed Background

過渡回折格子 プローブ光 ポンプ光 DFWM 信号 ①2本のポンプ光が入射して、過渡回折格子が生成される。 ②過渡回折格子によって、プローブ光が回折される。 ③信号光が観測される。 ①2本のポンプ光が入射して、過渡回折格子が生成される。 ②過渡回折格子によって、プローブ光が回折される。 ③信号光が観測される。 縮退四光波混合 (DFWM) 2本ポンプ光とプローブ光の時間差が0 非線形光学強度 ポンプ光間の時間差が0 過渡回折格子の緩和 Background

CuCl CaF 2 Zinc Blend Cu + Cl - Fluorite Ca 2+ F-F-

Future prospect Fabricating the CuCl thin film (320~340nm, 130 ℃ ) To keep high-quality of sample, fabricating cap layer Measuring the quality of CuCl thin film by DFWM spectroscopy CaF 2 cap layer 40 nm CaF 2 (111) substrate CaF 2 buffer layer CuCl layer 40 nm 1 mm 329 nm First After DFWM spectrum in a CuCl thin film having cap layer (<10K) Leaving it out in the air for 30 hours Saving CuCl thin film from degradation Repeating experiments Saving CuCl thin film from degradation Repeating experiments Advantage of cap layer

Transmission results ’10 12/15 ’10 11/18 crystal oscillator measured thickness ’10 11/18 250nm × nm ‘10 12/15 165nm × nm

AFM image results crystal oscillator measured thickness growth rate ’10 11/18 250nm × nm0.32nm/s ‘10 12/15 165nm × nm0.11nm/s ‘10 11/11 200nm ×6.0? 1200nm?? ‘10 11/18 40 nm 3 μm ‘10 12/15 3 μm 20 nm ‘10 11/11 3 μm 20 nm

10,12/02 10,11/30 Transmission results crystal oscillator measured thickness ’10 11/30 25nm ×6.0 64nm ‘10 12/02 60nm × nm

AFM image results ‘10 12/02 crystal oscillator measured thickness growth rate ‘10 12/02 60nm × nm0.06nm/s 20 nm 3 μm