26.6.12.  Temperature  Solute Solutes can have different effects on surface tension depending on their structure: Little or no effect, for example.

Slides:



Advertisements
Similar presentations
Respiratory Physiology: Gas Exchange
Advertisements

Properties of Solids and Fluids
Plasma Membrane.
Changes in Matter Chapter 3 sections 1 and 3. Solid Definite Shape and Definite Volume.
Solids, liquids, and Gases
Respiratory System Dr Archna Ghildiyal Associate Professor Department of Physiology KGMU.
Ch 24 pages Lecture 8 – Viscosity of Macromolecular Solutions.
By Mital Patel. Understand: Lung compliance Compliance diagram of lungs How do lungs adapt and why? Tension on lung surface Lung and chest compliance.
RESPIRATORY SYSTEM Ass. Prof. Dr. Emre Hamurtekin EMU Faculty of Pharmacy.
Chapter 19 Inspiration and Expiration. Ventilation Breathing – Movement of air from outside the body into the bronchial tree and alveoli and then back.
“Interactive Physiology” A.D.A.M. – Benjamin Cummings.
Lecture – 4 Dr.Zahoor Ali Shaikh
Chapter 2: Properties of Fluids
Colligative Properties are those properties of a liquid that may be altered by the presence of a solute. Examples vapor pressure melting point boiling.
Topic 6.4 – Gas Exchange.
Chapter 9 Solids and Fluids (c).
The Respiratory system Pulmonary ventilation – Chp 16 Respiration.
13.6 Blood Vessels and their Functions. Questions What does a ‘double’ circulatory system mean? Blood passes twice through the heart for each circuit.
Minute Respiratory Volume (MRV) Definition: it is total volume of new air that enters respiratory passages per minute Formula: Minute Resp. Volume= V T.
Lecture 7 Flow of ideal liquid Viscosity Diffusion Surface Tension.
Role of Surfactant in Respiration, Viscosity and Viscous force
Dispersed Systems FDSC Version. Goals Scales and Types of Structure in Food Surface Tension Curved Surfaces Surface Active Materials Charged Surfaces.
The Lungs How are the lungs adapted to provide our bodies with all the oxygen we need?
Topic 17: States of Matter Table of Contents Topic 17 Topic 17 Click box to view movie clip.
Respiratory Physiology Part I
Compliance Compliance is the extent to which the lungs expand for each unit increase in transpulmonary pressure. Total lung compliance of both lungs together.
Solids, Liquids, and Gases VocabularyStates of Matter Changes of State Behavior of Gases Odds and Ends $200 $400 $600 $800 $1000.
tivity/states_of_matter/
STATES OF MATTER Chemistry CP.
Physical Science Matter
Chapter 15: Water and Aqueous Systems
The Kinetic-Molecular Theory of Gases
 The force with which surface molecules are held is called the surface tension of the liquid  It is the force acting perpendicularly.
18.5 TRANSPORT Blood and Circulation. Mammalian Transport system  The transport system in humans is typical of all mammals. Materials are transported.
RESPIRATORY SYSTEM (Lungs Compliance)
1 Conceptual Physics Study Notes & Questions: Properties of Matter (Chap. 10) 1)The density of a material is the amount of mass per unit volume (p204)
 Triatomic molecule  Contains covalent bonds  Includes partial positive and partial negative charges  Where do these charges come from?
CHAPTER 16 Get ready to take notes! SOLIDS, LIQUIDS & GASES.
CSAN Review of Principles. Daltons law and Partial Pressure In a mixture of gases, each gas has a partial pressure which is the pressure which the gas.
properties & structure
Chapter 3 Solids, Liquids and Gases. Solids A solid has a definite shape and a definite volume. The particles in a solid are closely locked in position.
Intermolecular attractions determine how tightly liquids and solids pack Two important properties that depend on packing are compressibility and diffusion.
Foundation year Chapter 7 General Physics PHYS 101 Instructor : Sujood Alazzam 2015/
Pulmonary Ventilation Dr. Walid Daoud MBBCh, MSc, MD, FCCP Director of Chest Department, Shifa Hospital, A. Professor of Chest Medicine.
States of Matter Kinetic Molecular Theory: the idea that particles of matter are always in motion; this applies to all states of matter Used to explain.
 Each individual cell exists in a liquid environment  The presence of a liquid environment makes it easier for materials such as food, oxygen,
Lung Compliance and Surfactant Imrana Ihsan.  Change in lung volume for each unit change in transpulmonary pressure. = stretchiness of lungs  Transpulmonary.
How do cells maintain balance? Cells need to maintain a balance by controlling material that move in & out of the cell HOMEOSTASIS.
Respiratory system.. Compliance….L3
Blood is a suspension of cells in plasma. The viscosity of blood depends on the viscosity of the plasma, in combination with the hematocrit and proteins.
Chapter 3 ALCOS 7 Solid, Liquids, and Gases. Section 1: States of Matter Solids –Definite volume and definite shape –Particles are packed tightly together.
The Four Phases of Matter n There are four phases, or states, of matter. ¶ Solid- · Liquid ¸ Gas ¹ Plasma.
Properties of Fluids Objective 4 IPC 7A Investigate and identify properties of fluids (gases and liquids) including density, viscosity, and buoyancy.
Respiratory System.
Lecture 8 Factors affecting Pulmonary Ventilation By Dr. Khaled Khalil.
Gas Exchange and Pulmonary Circulation. Gas Pressure Gas pressure is caused by the molecules colliding with the surface. In the lungs, the gas molecules.
States of Matter. States of Matter Chapter 8 – Section 1 States of Matter : the physical forms of matter, which include solid, liquid, and gas. Composed.
Compliance of the Lungs The extent to which the lungs will expand for each unit increase in transpulmonary pressure. The total compliance of both lungs.
Pulmonary Ventilation
Faisal I. Mohammed, MD, PhD
6.4 Notes on Ventilation and Lung Structure
Lecture – 4 Dr.Zahoor Ali Shaikh
Solids, Liquids, and Gases
Respiration Lung Compliance.
properties & structure
Kinetic Theory of Gases
Respiratory System Goals of respiration are to provide
Chapter 11 Liquids, Solids, and IMFs: Sections
6.4 Gas Exchange.
Phases of Matter Overview Solid, liquid, gas (vapor) properties
Presentation transcript:

 Temperature  Solute Solutes can have different effects on surface tension depending on their structure: Little or no effect, for example sugar Increase surface tension, inorganic salts Decrease surface tension progressively, alcohols Decrease surface tension and, once a minimum is reached, no more effect: surfactants

 According to this principle substances which lower the surface tension becomes concentrated in the surface layer whereas substances which increase surface tension are distributed in the interior of the liquid  Lipids and proteins effective in lowering surface tension are found concentrated in the cell wall  Soaps and bile salts reduce the surface tension of water while sodium chloride and most inorganic salts increase the surface tension

 Laplace’s law states that the pressure inside an inflated elastic container with a curved surface, e.g., balloon is inversely proportional to the radius as long as the wall (of balloon) tension is presumed to change little.  A common illustration of this phenomenon is that the effort required to blow up a balloon is greatest when the diameter of the balloon is least

 Surface tension of plasma  Bile salts  Hay’s test  Respiration

 Surface tension of plasma is slightly less than water  Emulsifying action of Bile salts Bile salts are surface active. They facilitate action of pancreatic lipase and hence absorption of free fatty acids. Bile salts lowers surface tension of fat droplets  Hay’s test This test is based on the surface tension and is employed for detecting the presence of bile salts in urine (an indication of jaundice). If urine contains bile salts, the fine sulfur powder sprinkled on its surface settles down due to lowering of surface tension. Fine sulfur continues to float on the surface if urine does not contain bile salts

 Alveoli can be compared to gas in water, as the alveoli are wet and surround a central air space. The surface tension acts at the air- water interface and tends to make the alveolus smaller (by decreasing the surface area of the interface).  Surfactant is a lipoprotein mixture secreted by special surfactants secreting cells i. e. type II granular pneumocytes present in alveolar epithelium

 Surface tension at the air- water interface prevents expansion of alveoli  Air taken in by respiration pushes on the water lining the alveoli  The normal force due to surface tension of water pushes the air out reducing the size of the alveoli

 On the basis of Laplace law, air would be displaced from the smaller alveolus into the larger one and the smaller alveolus would thus become still smaller  This process would continue until the smaller alveolus would collapse entirely while displacing all of its air into the larger one  This process would lead to instability of alveoli

 Instability is prevented by surfactant. Amount of surfactant per alveolus is constant  As an alveolus becomes smaller the surfactant becomes more concentrated at the surface of alveolar lining fluid. Hence surface tension becomes progressively more less. This helps alveolus expand during inhalation  On the other hand as an alveolus becomes bigger, the surfactant is spread more thinly on the fluid surface. This increases the surface tension  This property of surfactant stabilizes the sizes of the alveoli, causing the larger alveoli to contract more and smaller ones to contract less.

 The absence of surfactant in the alveolar membrane of some premature infants causes the respiratory stress syndrome in them  Factors reducing production of surfactant or increasing its rate of destruction may contribute to adult respiratory distresss syndrome

 Compliance is the ability of lungs and thorax to expand. Lung compliance is defined as the volume change per unit of pressure change across the lung.  Measurements of lung volume obtained during the controlled inflation/deflation of a normal lung show that the volumes obtained during deflation exceed those during inflation, at a given pressure.  This difference in inflation and deflation volumes at a given pressure is called hysteresis and is due to the air-water surface tension that occurs at the beginning of inflation.

 However, surfactant decreases the alveolar surface tension to very low, near-zero levels  At the end of inhalation, surfactant distributes thinly on the surface limiting the volume of the alveoli  Pulmonary surfactant thus greatly reduces surface tension increasing compliance allowing the lung to inflate much more easily, thereby reducing the work of breathing. It reduces the pressure difference needed to allow the lung to inflate.

 Viscosity is a property of flowing fluid (liquid/gas) by virtue of which relative motion between layers in contact is opposed.  It is the internal resistance against the free flow of liquid due to frictional forces between the fluid layers moving over each other at different velocities  If velocity of layers is same then relative velocity is zero and the liquid is said to be non viscous

 Density Viscosity of a liquid varies directly with its density  Temperature: An increase in temperature decreases the viscosity of liquid. This is due to an increase in the kinetic energy of molecules for overcoming the resistance due to intermolecular attractions and also for breaking intermolecular H-bonds of associated liquid  Solute concentration: Viscosity of a solution is directly proportional to the solute concentration. Suspended particles cause an increase in viscosity in proportion to the volume of suspended material relative to the total volume

 Newtonian fluids: An ideal or Newtonian fluid is one in which the viscosity is constant and is independent of how rapidly the fluid flows. Plasma is a Newtonian fluid even at very high protein concentrations  Non- Newtonian fluids: Non-Newtonian fluids change viscosity at variant flow velocities. Blood is a Non-Newtonian fluid Viscoelastic fluids: The fluids which have elastic as well as viscous properties are called viscoelastic. They have a memory of their original state i. e. they return to their original state after the deformation is removed

 Blood is a suspension of cells in plasma. Plasma is a water solution of salts and heavily hydrated macromolecules  The viscosity of blood thus depends on the viscosity of the plasma, in combination with the hematocrit (The hematocrit or packed cell volume (PCV) or erythrocyte volume fraction (EVF) is the volume percentage (%) of red blood cells in blood. It is normally about 45% for men and 40% for women)  Blood cells behave as suspended particles and increase the viscosity of blood. Fibrinogen due to its asymmetry and high density imparts maximum viscosity to the blood  Globulins have greater influence than albumin

 Deformability of Erythrocytes  Haematocrit

 Erythrocyte deformability refers to the cellular properties of erythrocytes which determine the degree of shape change under a given level of applied force  Erythrocytes change their shape extensively under the influence of applied forces in fluid flow or while passing through microcirculation.  The extent and geometry of this shape change is determined by both the mechanical properties of erythrocytes, the magnitude of the applied forces and the orientation of erythrocytes with the applied forces

 Erythrocyte deformability is an important determinant of blood viscosity, hence blood flow resistance in the vascular system  Deformability of erythrocytes affects viscosity of blood in small vessels where erythrocytes are forced to pass through blood vessels with diameters smaller than their size  In sickle cell anaemia, deformability of erythrocytes is reduced thereby increasing viscosity of blood

 Erythrocyte when freely suspended assumes biconcave discoid shape indicative of large excess of its surface area over its volume  Shape change of erythrocytes under applied forces is reversible and the biconcave-discoid shape is maintained after the removal of the deforming forces  In other words, erythrocytes behave like elastic bodies, while they also resist to shape change under deforming forces

 The viscoelasticity of blood is traceable to the elastic red blood cells, which occupy about half the volume.  When the red cells are at rest they tend to aggregate and stack together  In order for blood to flow freely, the size of these aggregates must be reduced, which in turn provides some freedom of internal motion. The forces that disaggregate the cells also produce elastic deformation and orientation of the cells

 In Region 1, the cells are in large aggregates  In Region 2, the cells are disaggregated and the applied forces are forcing the cells to orient. As the shear rate increases, the applied forces deform the cells  In Region 3, increasing stress deforms the cells, and if the cells have normal deformability they will form layers that slide on layers of plasma.

 Viscosity of blood also varies with changing haematocrit  When the haematocrit rises, the friction between the successive layers of blood increases. Hence with increasing haematocrit the viscosity of the blood rises drastically

 This is due to the presence of thermoproteins, which show physical change s at temperatures below or above 37 °C  Cryglobulin operates at temperatures below 37 °C forming reversible or irreversible precipitates, gels or crystals  Pyroglobulin gets precipitated at 56 °C  Bence-Jones proteins gets precipitated at 40 °C  At 0 °C, the viscosity of blood is increased up to three times. This reduces the circulation in the tissues exposed to cold

 Inflammation causes loss of plasma into the tissues. This leads to slowing of blood flow, disturbance in the axial flow, rouleaux formation and increase in viscosity  Blood viscosity is increased in diabetes mellitus, multiple myloma, jaundice, leukaemia, asphyxia, vomiting and diarrhea Typical mammalian erythrocytes: (a) seen from surface; (b) in profile, forming rouleaux

 Synovial fluid is highly viscous. Its viscosity varies from 50 to 200 times that of water. Its viscosity is due to the presence of hyaluronic acid  Viscosity of Synovial fluid reflects its hyaluronic acid content  In inflammatory effusions such as rheumatoid arthritis etc, the viscosity of synovial fluid is markedly decreased (down to water like) indicating the presence of a thin watery fluid containing degraded small molecular hyaluronidase particles