Title “New forms of quantum matter near absolute zero temperature” Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold.

Slides:



Advertisements
Similar presentations
Creating new states of matter:
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Dynamics of Spin-1 Bose-Einstein Condensates
Bose-Einstein Condensation Ultracold Quantum Coherent Gases.
Title “When freezing cold is not cold enough - new forms of matter close to absolute zero temperature” Wolfgang Ketterle Massachusetts Institute of Technology.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Experiments with ultracold atomic gases Andrey Turlapov Institute of Applied Physics, Russian Academy of Sciences Nizhniy Novgorod.
“Characterizing many-body systems by observing density fluctuations” Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Sound velocity and multibranch Bogoliubov - Anderson modes of a Fermi superfluid along the BEC-BCS crossover Tarun Kanti Ghosh Okayama University, Japan.
Interacting Ultra Cold Atoms a brief overview Fei Zhou PITP, University of British Columbia at Quantum Nanoscience conference, Noosa Blue, Australia, Jan.
Fermi surface change across quantum phase transitions Phys. Rev. B 72, (2005) Phys. Rev. B (2006) cond-mat/ Hans-Peter Büchler.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Modeling strongly correlated electron systems using cold atoms Eugene Demler Physics Department Harvard University.
Competing instabilities in ultracold Fermi gases $$ NSF, AFOSR MURI, DARPA ARO Harvard-MIT David Pekker (Harvard) Mehrtash Babadi (Harvard) Lode Pollet.
Title “Ultracold gases – from the experimenters’ perspective (II)” Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Temperature scale Titan Superfluid He Ultracold atomic gases.
Ultracold Fermi gases : the BEC-BCS crossover Roland Combescot Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
Martin Zwierlein TOPS, MIT, Cambridge, June 24 th, 2009 Pairs and Loners in Ultracold Fermi Gases Massachusetts Institute of Technology Center for Ultracold.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
On the path to Bose-Einstein condensate (BEC) Basic concepts for achieving temperatures below 1 μK Author: Peter Ferjančič Mentors: Denis Arčon and Peter.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
1 Bose-Einstein Condensation PHYS 4315 R. S. Rubins, Fall 2009.
What Do Ultracold Fermi Superfluids Teach Us About Quark Gluon and Condensed Matter Wichita, Kansas March 2012.
Universal thermodynamics of a strongly interacting Fermi gas Hui Hu 1,2, Peter D. Drummond 2, and Xia-Ji Liu 2 1.Physics Department, Renmin University.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Experiments with ultracold atomic gases
Strongly interacting scale-free matter in cold atoms Yusuke Nishida March 12, MIT Faculty Lunch.
Chapter 13 States of Matter Liquids and Solids Changes of State.
High-performance Apparatus for Bose-Einstein Condensation of Rubidium Yoshio Torii Erik Streed Micah Boyd Gretchen Campbell Pavel Gorelik Dominik Schneble.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
E. Kuhnle, P. Dyke, M. Mark, Chris Vale S. Hoinka, Chris Vale, P. Hannaford Swinburne University of Technology, Melbourne, Australia P. Drummond, H. Hu,
1/23 BCS-BEC crossover in relativistic superfluid Yusuke Nishida (University of Tokyo) with Hiroaki Abuki (Yukawa Institute) ECT*19 May, 2005.
Lianyi He and Pengfei Zhuang Physics Department, Tsinghua U.
Interference of Two Molecular Bose-Einstein Condensates Christoph Kohstall Innsbruck FerMix, June 2009.
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Strong correlations and quantum vortices for ultracold atoms in rotating lattices Murray Holland JILA (NIST and Dept. of Physics, Univ. of Colorado-Boulder)
Light scattering and atom amplification in a Bose- Einstein condensate March 25, 2004 Yoshio Torii Institute of Physics, University of Tokyo, Komaba Workshop.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Part A - Comments on the papers of Burovski et al. Part B - On Superfluid Properties of Asymmetric Dilute Fermi Systems Dilute Fermi Systems.
Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites John Huckans.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Study of the LOFF phase diagram in a Ginzburg-Landau approach G. Tonini, University of Florence, Florence, Italy R. Casalbuoni,INFN & University of Florence,
Bose-Einstein Condensation (a tutorial) Melinda Kellogg Wyatt Technology Corporation Santa Barbara, CA June 8, 2010.
Ingrid Bausmerth Alessio Recati Sandro Stringari Ingrid Bausmerth Alessio Recati Sandro Stringari Chandrasekhar-Clogston limit in Fermi mixtures with unequal.
Pairing Gaps in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems Cheng Chin JFI and Physics, University of Chicago Exp.: Rudolf.
Copenhagen, June 15, 2006 Unitary Polarized Fermi Gases Erich J. Mueller Cornell University Sourish Basu Theja DeSilva NSF, Sloan, CCMR Outline: Interesting.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
Bogoliubov-de Gennes Study of Trapped Fermi Gases Han Pu Rice University (INT, Seattle, 4/14/2011) Leslie Baksmaty Hong Lu Lei Jiang Randy Hulet Carlos.
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
Rotating FFLO Superfluid in cold atom gases Niigata University, Youichi Yanase Tomohiro Yoshida 2012 Feb 13, GCOE シンポジウム「階層の連結」, Kyoto University.
Subir Sachdev Superfluids and their vortices Talk online:
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Superfluid shells for trapped fermions with mass and population imbalance G.-D. Lin, W. Yi*, and L.-M. Duan FOCUS center and MCTP, Department of Physics,
Soliton-core filling in superfluid Fermi gases with spin imbalance Collaboration with: G. Lombardi, S.N. Klimin & J. Tempere Wout Van Alphen May 18, 2016.
A Review of Bose-Einstein Condensates MATTHEW BOHMAN UNIVERSITY OF WASHINGTON MARCH 7,
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Cold Gases Meet Condensed Matter Physics Cold Gases Meet Condensed Matter Physics C. Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure & UPMC,
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
Agenda Brief overview of dilute ultra-cold gases
Superfluidity and Quantum Vortices. Outline of the presentation Bose-Einstein Condensation Superfluidity Quantum Vortix.
University of Michigan
Bose-Einstein Condensation Ultracold Quantum Coherent Gases
Space Telescope Science Institute
Presentation transcript:

Title “New forms of quantum matter near absolute zero temperature” Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 5/23/06 NASA workshop Airlie Center

Title The ongoing revolution in atomic physics …

Title Enabling technology: Nanokelvin temperatures

The concepts The cooling methods Laser cooling Evaporative cooling

Sodium BEC I experiment (2001)

Guinness Book Record

Height of atmosphere How to measure temperature Height of the atmosphere 300 K h=10 km 300  K h=1 cm e -(10 6 ) Potential (gravitational) energy mgh = k B T/2 (g: gravitational acceleration) In thermal equilibrium: Potential energy ~ kinetic energy 1 nK h= 30 nm

1.05 nK 780 pK 450 pK Trapping a sodium BEC with a single coil Lowest temperature ever achieved: 450 picokelvin Temperature measurement by imaging the size of the trapped cloud A.E. Leanhardt, T.A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D.E. Pritchard, and W. Ketterle, Science 301, 1513 (2003). 1 cm

Precision measurements Precision measurements with Bose-Einstein condensates... We have to get rid of perturbing fields … Gravity Magnetic fields

What distinguishes nanokelvin? Physics BEC Phase transition Quantum reflection Interactions Ease of Manipulation

BEC at JILA and MIT JILA, June ‘95 (Rubidium) MIT, Sept. ‘95 (Sodium)

T.A. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D.E. Pritchard, W.K. Quantum Reflection of Ultracold Atoms Phys. Rev. Lett. 93, (2004) Preprint (2006)

Silicon surface Sodium BEC

Quantum Reflection from Nanopillars Reflection Probability Velocity (mm/s) Solid Si surface Reduced density Si surface 1 mm/s is 1.5 nK x k B kinetic energy

What distinguishes nanokelvin? Physics BEC Phase transition Quantum reflection Interactions Ease of Manipulation

Moving condensates Loading sodium BECs into atom chips with optical tweezers BEC production BEC arrival 44 cm T.L.Gustavson, A.P.Chikkatur, A.E.Leanhardt, A.Görlitz, S.Gupta, D.E.Pritchard, W. Ketterle, Phys. Rev. Lett. 88, (2002). Atom chip with waveguides

Splitting of condensates 15ms Expansion Two condensates 1mm One trapped condensate

Trapped 15ms expansion 1mm Two condensates Splitting of condensates

Two condensates Splitting of condensates Y. Shin, C. Sanner, G.-B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, M. Vengalattore, and M. Prentiss: Phys. Rev. A 72, (R) (2005). Very recent progress: 200 ms coherence time for an atom chip interferometer

Two condensates Splitting of condensates The goal: Atom interferometry: Matter wave sensors Use ultracold atoms to sense Rotation  Navigation Gravitation  Geological exploration

What distinguishes nanokelvin? Physics BEC Phase transition Quantum reflection Interactions Ease of Manipulation

Two of the biggest questions in condensed matter physics: The nature of high-temperature superconductors Quantum magnetism, spin liquids Strongly correlated, strongly interacting systems

Title Particle A Particle B Pair A-B How to get strong interactions?

Title Particle A Particle B Pair A-B Resonant interactions have infinite strength Unitarity limited interactions: Pairing in ultracold fermions Relevant to quark-gluon plasmas

E Feshbach resonance Magnetic field Free atoms Molecule

E Feshbach resonance Magnetic field Free atoms Molecule Disclaimer: Drawing is schematic and does not distinguish nuclear and electron spin.

E Feshbach resonance Magnetic field Molecule Two atoms …. Free atoms

E Feshbach resonance Magnetic field Molecule … form an unstable molecule Free atoms

E Feshbach resonance Magnetic field Molecule … form a stable molecule Free atoms

E Feshbach resonance Magnetic field Molecule Atoms attract each other Free atoms

E Feshbach resonance Magnetic field Molecule Atoms attract each other Atoms repel each other Free atoms

Force between atoms Scattering length Feshbach resonance Magnetic field Atoms attract each other Atoms repel each other

Title Observation of High- Temperature Superfluidity in Ultracold Fermi Gases

Bosons Particles with an even number of protons, neutrons and electrons Fermions Particles with an odd number of protons, neutrons and electrons Bose-Einstein condensation  atoms as waves  superfluidity At absolute zero temperature … Fermi sea:  Atoms are not coherent  No superfluidity

Two kinds of fermions Fermi sea:  Atoms are not coherent  No superfluidity Pairs of fermions Particles with an even number of protons, neutrons and electrons

At absolute zero temperature … Pairs of fermions Particles with an even number of protons, neutrons and electrons Bose-Einstein condensation  atoms as waves  superfluidity Two kinds of fermions Particles with an odd number of protons, neutrons and electrons Fermi sea:  Atoms are not coherent  No superfluidity

Two kinds of fermions Particles with an odd number of protons, neutrons and electrons Fermi sea:  Atoms are not coherent  No superfluidity Weak attractive interactions Cooper pairs larger than interatomic distance momentum correlations  BCS superfluidity

Bose Einstein condensate of molecules BCS Superconductor Atom pairs Electron pairs

Molecules Atoms Energy Magnetic field Molecules are unstable Atoms form stable molecules Atoms repel each other a>0 Atoms attract each other a<0 BEC of Molecules: Condensation of tightly bound fermion pairs BCS-limit: Condensation of long-range Cooper pairs

Bose Einstein condensate of molecules Atom pairs BCS superfluid

Molecular BEC BCS superfluid

Molecular BEC BCS superfluid Magnetic field

Molecular BEC BCS superfluidCrossover superfluid

High-temperature superfluidity at 100 nK? Binding energy of pairsTransition temperature  … normal superconductors superfluid 3 He high T c superconductors 0.3 high T c superfluid Fermi energy Fermi temperature  (density) 2/3 Scaled to the density of electrons in a solid: Superconductivity far above room temperature!

Optical 1064 nm axial = Hz radial = 50–200 Hz E trap =  K States |1> and |2> correspond to |  > and |  > Preparation of an interacting Fermi system in Lithium-6

Title How to show that these gases are superfluid?

Rotating buckets

Quantized circulation Quantization: Integer number of matter waves on a circle

Vortex structure

Spinning a strongly interacting Fermi gas Makes life hard ….. Container is an optical trap at high bias field! Imperfections of the beam Anisotropy Anharmonicity Stray magnetic field gradients Gravity etc… Have to fight against:

Vortices in the BEC-BCS Crossover Vortex lattices in the BEC-BCS crossover M.W. Zwierlein, J.R. Abo-Shaeer, A. Schirotzek, C.H. Schunck, W. Ketterle, Nature 435, (2005) This establishes phase coherence and superfluidity in gases of molecules and of fermionic atoms Astrophysical significance: Superfluidity of neutron in neutron stars Pulsar glitches

Atomic Bose-Einstein condensate (sodium) Molecular Bose-Einstein condensate (lithium 6 Li 2 ) Pairs of fermionic atoms (lithium-6) Gallery of superfluid gases

Fermionic Superfluidity with Imbalanced Spin Populations Astrophysical significance: Superfluidity of quarks in neutron stars

BCS Pairing of Fermions Energy 22 11

Pairing costs kinetic energy, but there is gain in potential energy (attractive interaction between fermions) BCS Pairing of Fermions Energy 22 11 Pairing energy 

Unequal Fermi energies (non-interacting) (example: Apply magnetic field to a normal conductor) BCS Pairing of Fermions Energy 22 11

BCS Pairing of Fermions 22 11 Interacting case, fixed particle number: Phase separation! (Bedaque, Caldas, Rupak 2003) Breakdown of the BCS state when   1 –  2 Superfluid gap is now smaller NNS Clogston 1962

FFLO/ LOFF-State Breached Pair State Distorted Fermi Surface Phase Separation Recent theory (>=2005): Carlson, Reddy, Cohen, Sedriakan, Mur-Petit, Polls, Müther, Castorina, Grasso, Oertel, Urban, Zappalà, Pao, Wu, Yip, Sheehy, Radzihovsky, Son, Stephanov, Yang, Sachdev, Pieri, Strinati, Yi, Duan, He, Jin, Zhuang, Caldas, Chevy

94%90%56%30%22%12%6% Fermionic Superfluidity with Imbalanced Spin Populations Population Imbalance:  = (N 2 -N 1 )/(N 2 +N 1 ) |2> 0% |1> BEC-Side1/k F a = %-74%0%-2%-32%-16%-58%-48% |2> |1> BCS-Side1/k F a = -0.15

Increase population imbalance Momentum distribution after magnetic field sweep to the BEC side |1> |2>

Superfluidity is robust in the strongly interacting regime! M.W. Zwierlein, A. Schirotzek, C.H. Schunck, W. Ketterle, Science 311, 492 (2006), published online on Science Express 21 December 2005 The Window of Superfluidity Decreasing Interaction 1/k F a – 0.27 – 0.44 BEC BCS Condensate Fraction Population Imbalance

Phase Diagram for Unequal Mixtures Breakdown: Critical mismatch in Fermi energies  E F  Gap   E Kin = 310 nK 350 nK 400 nK 430 nK Superfluid Normal BCSBEC Critical Population Imbalance

Energy What is the nature of the superfluid state? 22 11 NNS

Phase Contrast Imaging |1> |2> |3> n2n2 n1n1 80 MHz Imaging beam red-detuned for |1>, blue-detuned for |2> Optical signal of phase-contrast imaging directly measures density difference  n=n 2 -n 1 Li linewidth:  = 6 MHz |1>|2> Equal mixture In-trap images

The shell structure is a hint of the phase separation. Direct imaging of the density difference -50%-37%20%0%-24%-30%30%40%50% Population imbalance

Reconstruction of 3D density profile Only assumption: cylindrical symmetry Phase Separation !!  =0.6

Atomic physics “knobs” to control many-body physics Density to cm -3 Temperature 500 pK to 1 mK Interactions: scattering length a -  to +  Choice of hyperfine state(s): | , |  ; spinors Optical traps and lattices: 1D, 2D systems Optical lattices with different symmetries Spin dependent lattices Rotation Disorder BB a Use the tools and precision of atomic physics to realize new phenomena (Hamiltonians) of many-body physics Condensed-matter physics at ultra-low densities (100,000 times thinner than air)

BEC I Ultracold fermions Martin Zwierlein Christian Schunck Andre Schirotzek Peter Zarth Ye-ryoung Lee Yong-Il Shin BEC II Na 2 molecules Na-Li mixture Optical Lattices Kaiwen Xu Jit Kee Chin Daniel Miller Yingmei Liu Widagdo Setiawan Christian Sanner BEC III Atom chips, surface atom optics Tom Pasquini Gyu-Boong Jo Michele Saba Caleb Christensen Sebastian Will D.E. Pritchard BEC IV Atom optics and optical lattices Micah Boyd Erik Streed Gretchen Campbell Jongchul Mun Patrick Medley D.E. Pritchard $$ NSF ONR NASA DARPA Opening for postdoc