CSCE 211: Digital Logic Design

Slides:



Advertisements
Similar presentations
Boolean Algebra and Logic Gates
Advertisements

Logical Systems Synthesis.
Chapter 2 Logic Circuits.
Based on slides by: Charles Kime & Thomas Kaminski © 2004 Pearson Education, Inc. ECE/CS 352: Digital System Fundamentals Lecture 8 – Systematic Simplification.
Prof. YingLi Tian Sept. 10, 2012 Department of Electrical Engineering The City College of New York The City University of New York (CUNY) Lecture 4: Implementation.
Boolean Algebra and Combinational Logic
ECE 331 – Digital System Design
Chapter 2 – Combinational Logic Circuits Part 1 – Gate Circuits and Boolean Equations Logic and Computer Design Fundamentals.
Chapter 2: Boolean Algebra and Logic Functions
1 Why study Boolean Algebra? 4 It is highly desirable to find the simplest circuit implementation (logic) with the smallest number of gates or wires. We.
Chapter 2 Combinational Systems And / Or / Not. TRIAD PRINCIPLE: Combinational is about And / Or / Not combinations As well as equivalent functions. It.
1 COMBINATIONAL LOGIC One or more digital signal inputs One or more digital signal outputs Outputs are only functions of current input values (ideal) plus.
BOOLEAN ALGEBRA Saras M. Srivastava PGT (Computer Science)
2 - 1 Chapter 2 Combinational Systems Chapter 2 Combinational Systems 2.1 The Design Process for Combinational Systems  Continuing Example(CE)
 Seattle Pacific University EE Logic System DesignSOP-POS-1 The Connection: Truth Tables to Functions abcF abcF
1 Representation of Logic Circuits EE 208 – Logic Design Chapter 2 Sohaib Majzoub.
Department of Computer Engineering
ECE 331 – Digital System Design
Overview Part 1 – Gate Circuits and Boolean Equations
Chapter 3 Gate-Level Minimization
Boolean Logic and Circuits ELEC 311 Digital Logic and Circuits Dr. Ron Hayne Images Courtesy of Cengage Learning.
Physics 343 Advanced Electronics Engineering 343 Digital Systems Electronics Courses.
Gate-level Minimization
CHAPTER 3: PRINCIPLES OF COMBINATIONAL LOGIC
LOGIC GATES & BOOLEAN ALGEBRA
ECE 301 – Digital Electronics Basic Logic Operations, Boolean Expressions, and Boolean Algebra (Lecture #3)
Based on slides by:Charles Kime & Thomas Kaminski © 2004 Pearson Education, Inc. ECE/CS 352: Digital System Fundamentals Lecture 6 – Canonical Forms.
Chap 2. Combinational Logic Circuits
ES 244: Digital Logic Design Chapter 2 Chapter 2: Combinational Systems Adapted from Alan Marcovitz’s Introduction to Logic and Computer Design Uchechukwu.
LOGIC CIRCUITLOGIC CIRCUIT. Goal To understand how digital a computer can work, at the lowest level. To understand what is possible and the limitations.
A. Abhari CPS2131 Chapter 2: Boolean Algebra and Logic Gates Topics in this Chapter: Boolean Algebra Boolean Functions Boolean Function Simplification.
1 Lect # 2 Boolean Algebra and Logic Gates Boolean algebra defines rules for manipulating symbolic binary logic expressions. –a symbolic binary logic expression.
Binary Logic and Gates Boolean Algebra Canonical and Standard Forms Chapter 2: Boolean Algebra and Logic Gates.
Boolean Algebra & Logic Circuits Dr. Ahmed El-Bialy Dr. Sahar Fawzy.
Chapter 2: Basic Definitions BB inary Operators ●A●AND z = x y = x yz=1 if x=1 AND y=1 ●O●OR z = x + yz=1 if x=1 OR y=1 ●N●NOT z = x = x’ z=1 if x=0.
Module –I Boolean Algebra Digital Design Amit Kumar Assistant Professor SCSE, Galgotias University, Greater Noida.
Karnaugh Map and Circuit Design.
BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION
Digital Logic (Karnaugh Map). Karnaugh Maps Karnaugh maps (K-maps) are graphical representations of boolean functions. One map cell corresponds to a row.
Chapter 2 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Combinational Systems.
Review. Boolean Algebra.
ECE DIGITAL LOGIC LECTURE 8: BOOLEAN FUNCTIONS Assistant Prof. Fareena Saqib Florida Institute of Technology Spring 2016, 02/11/2016.
ECE 301 – Digital Electronics Minimizing Boolean Expressions using K-maps, The Minimal Cover, and Incompletely Specified Boolean Functions (Lecture #6)
Boolean Algebra. BOOLEAN ALGEBRA Formal logic: In formal logic, a statement (proposition) is a declarative sentence that is either true(1) or false (0).
DE MORGAN’S THEOREM. De Morgan’s Theorem De Morgan’s Theorem.
1 CS 352 Introduction to Logic Design Lecture 2 Ahmed Ezzat Boolean Algebra and Its Applications Ch-3 + Ch-4.
CHAPTER 2 Boolean algebra and Logic gates
CHAPTER 3 Simplification of Boolean Functions
De Morgan’s Theorem,.
Chapter 2 Combinational Systems
Chapter 2: Boolean Algebra and Logic Functions
DeMorgan’s Theorem DeMorgan’s 2nd Theorem
ECE 2110: Introduction to Digital Systems
ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #2 Instructor: Andrew B. Kahng (lecture)
CS 105 Digital Logic Design
Gate Circuits and Boolean Equations
CSCE 211: Digital Logic Design
Boolean Algebra and Combinational Logic
Princess Sumaya University
ECE 331 – Digital System Design
Boolean Algebra.
Lecture 4 Sums of Product Circuits Simplification
CSCE 211: Digital Logic Design
Boolean Algebra.
CSCE 211: Digital Logic Design
BASIC & COMBINATIONAL LOGIC CIRCUIT
Chapter 3 Gate-level Minimization.
CSCE 211: Digital Logic Design
3-Variable K-map AB/C AB/C A’B’ A’B AB AB’
Laws & Rules of Boolean Algebra
Presentation transcript:

CSCE 211: Digital Logic Design Chin-Tser Huang huangct@cse.sc.edu University of South Carolina

Chapter 2: Combinational Systems

Objectives Develop the tools to specify combinational systems Develop an algebraic approach for the description, simplification, and implementation of combinational systems 8/27/2009

Continuing Examples CE1. A system with four inputs, A, B, C, and D, and one output, Z, such that Z=1 if three of the inputs are 1. CE2. A single light (that can be on or off) that can be controlled by any one of three switches. One switch is the master on/off switch. If it is off, the lights are off. When the master switch is on, a change in the position of one of the other switches (from up to down or from down to up) will cause the light to change state. CE3. A system to do 1 bit of binary addition. It has three inputs (the 2 bits to be added plus the carry from the next lower order bit) and produces two outputs, a sum bit and a carry to the next higher order position. 8/27/2009

Continuing Examples CE4. A system that has as its input the code for a decimal digit, and produces as its output the signals to drive a seven-segment display, such as those on most digital watches and numeric displays (more later). CE5. A system with nine inputs, representing two 4-bit binary numbers and a carry input, and one 5-bit output, representing the sum. (Each input number can range from 0 to 15; the input can range from 0 to 31.) 8/27/2009

Design Process for Combinational Systems Step 1: Represent each of the inputs and output in binary. Step 1.5: If necessary, break the problem into smaller subproblems. Step 2: Formalize the design specification either in the form of a truth table or of an algebraic expression. Step 3: Simplify the description. Step 4: Implement the system with the available components, subject to the design objectives and constraints. 8/27/2009

Gate A gate is a network with one output Gate is the basic component for implementation For example, an OR gate is shown as follows 8/27/2009

Don’t Care Conditions For some input combinations, it doesn’t matter what the output is Represented as X Examples of don’t cares Some input combinations never occur When one system is designed to drive a second system, some input combination of the first system will make the second system behave the same way 8/27/2009

Example with Don’t Cares If for some combination of A, B, C, System Two behaves the same way no matter J is 0 or 1, then J is a don’t care in this case 8/27/2009

Development of Truth Table Should be straightforward once the inputs are coded into binary! The number of inputs determines the number of rows 8/27/2009

How to Develop Truth Table for CE4? 8/27/2009

Switching Algebra Need an algebra to Obtain the output in terms of the input according to the specification of a network of gates Simplify the expression Implement networks of gates 8/27/2009

Operators of Switching Algebra OR (written as +) a + b (read a OR b) is 1 if and only if a = 1 or b = 1 or both. AND (written as · or simply two variables catenated) a · b = ab (read a AND b) is 1 if and only if a = 1 and b = 1. NOT (written as ´) a´ (read NOT a) is 1 if and only if a = 0. Can you construct the truth table for OR, AND, and NOT? 8/27/2009

AND, OR, and NOT Gates 8/27/2009

Basic Properties of Switching Algebra Commutative P1a. a + b = b + a P1b. ab = ba Associative P2a. a + (b + c) = (a + b) + c P2b. a(bc) = (ab)c This can be generalized: a + b + c + d + … is 1 if any of the operands is 1 and is 0 only if all are 0 abcd … is 1 if all of the operands are 1 and is 0 only if any is 0 8/27/2009

8/27/2009

Order of Precedence Without parentheses, order of precedence is NOT AND OR With parentheses, expressions inside the parentheses are evaluated first 8/27/2009

Basic Properties of Switching Algebra Identity P3a. a + 0 = a P3b. a · 1 = a Null P4a. a + 1 = 1 P4b. a · 0 = 0 Complement P5a. a + a´ = 1 P5b. a · a´ = 0 P3aa. 0 + a = a P3bb. 1 · a = a P4aa. 1 + a = 1 P4bb. 0 · a = 0 P5aa. a´ + a = 1 P5bb. a´ · a = 0 8/27/2009

Basic Properties of Switching Algebra Idempotency P6a. a + a = a P6b. a · a = a Involution P7. (a´)´ = a Distributive P8a. a (b + c) = ab + ac P8b. a + bc = (a + b)(a + c) 8/27/2009

Definitions of Terminology A literal is the appearance of a variable or its complement. A product term is one or more literals connected by AND operators. A standard product term, also minterm is a product term that includes each variable of the problem, either uncomplemented or complemented. A sum of products expression (often abbreviated SOP) is one or more product terms connected by OR operators. A canonical sum or sum of standard product terms is just a sum of products expression where all of the terms are standard product terms. 8/27/2009

Definitions of Terminology A minimum sum of products expression is one of those SOP expressions for a function that has the fewest number of product terms. If there is more than one expression with the fewest number of terms, then minimum is defined as one or more of those expressions with the fewest number of literals. (1) x´yz´ + x´yz + xy´z´ + xy´z + xyz 5 terms, 15 literals (2) x´y + xy´ + xyz 3 terms, 7 literals (3) x´y + xy´ + xz 3 terms, 6 literals (4) x´y + xy´ + yz 3 terms, 6 literals 8/27/2009

Definitions of Terminology A sum term is one or more literals connected by OR operators. A standard sum term, also called a maxterm, is a sum term that includes each variable of the problem, either uncomplemented or complemented. A product of sums expression (POS) is one or more sum terms connected by AND operators. A canonical product or product of standard sum terms is just a product of sums expression where all of the terms are standard sum terms. 8/27/2009

Examples SOP: x´y + xy´ + xyz POS: (x + y´)(x´ + y)(x´ + z´) Both: x´ + y + z or xyz´ Neither: x(w´ + yz) or z´ + wx´y + v(xz + w´) 8/27/2009

More Properties of Switching Algebra Adjacency P9a. ab + ab´ = a P9b. (a + b)(a + b´) = a Simplification P10a. a + a´b = a + b P10b. a(a´ + b) = ab 8/27/2009

More Properties of Switching Algebra DeMorgan P11a. (a + b)´ = a´b´ P11b. (ab)´ = a´ + b´ Can be extended to more than two operands: P11aa. (a + b + c …)´ = a´b´c´… P11bb. (abc…)´ = a´ + b´ + c´ + … 8/27/2009

From Truth Table to Algebraic Expressions f is 1 if a = 0 AND b = 1 OR if a = 1 AND b = 0 OR if a = 1 AND b = 1 f is 1 if a´ = 1 AND b = 1 OR if a = 1 AND b´ = 1 OR if a = 1 AND b = 1 f is 1 if a´b = 1 OR if ab´ = 1 OR if ab = 1 f = a´b + ab´ + ab 8/27/2009

From Truth Table to Algebraic Expressions Can use minterm numbers since the product terms are minterms Must include variable names if minterm numbers are used For example, the previous function can be written as f(a, b) = m1 + m2 + m3 f(a, b) = ∑m(1, 2, 3) If the function includes don’t cares, use a separate ∑ to represent don’t care terms 8/27/2009

Number of Functions of n Variables 8/27/2009

Implementation using AND, OR, and NOT Gates f = x’yz’ + x’yz + xy’z’ + xy’z + xyz 8/27/2009

Implementation using AND, OR, and NOT Gates Can you draw a diagram of circuit for a minimum SOP of the same function, f = x’y + xy’ + xz ? This, and the previous diagram, are two-level circuit 8/27/2009

Implementation using AND, OR, and NOT Gates Can you draw a diagram of circuit for a minimum POS of the same function, f = (x + y)(x’ + y’ + z) ? 8/27/2009

Implementing Functions that are not in SOP or POS form h = z’ + wx’y + v(xz + w’) 8/27/2009

Three More Types of Gates: NAND, NOR, and Exclusive-OR Why do we use NAND and NOR gates rather than AND, OR, and NOT gates? Using NAND or NOR is more convenient: need less number of gates More importantly, NAND and NOR are functionally complete: they can be used to implement AND, OR, and NOT so we need less types of gates! (How?) 8/27/2009

NAND and NOR Gates 8/27/2009

Use NAND to Implement AND, OR, and NOT 8/27/2009

Implementation using NAND 8/27/2009

Exclusive-OR and Exclusive-NOR Gates 8/27/2009

Useful Properties of Exclusive-OR 8/27/2009

Simplification of Algebraic Expression Primary tools: P9a. ab + ab´ = a P9b. (a + b)(a + b´) = a P10a. a + a´b = a + b P10b. a(a´ + b) = ab Other useful properties: P6a. a + a = a P6b. a · a = a P8a. a (b + c) = ab + ac P8b. a + bc = (a + b)(a + c) Another useful property when the function is not in SOP or POS form: Absorption P12a. a + ab = a P12b. a(a + b) = a 8/27/2009

Simplification Examples Can you simplify (1) to each of (2), (3), and (4)? (1) x´yz´ + x´yz + xy´z´ + xy´z + xyz (2) x´y + xy´ + xyz (3) x´y + xy´ + xz (4) x´y + xy´ + yz 8/27/2009

Simplification Examples Can you simplify the following functions? xyz + x’y + x’y’ = ? wx + wxy + w’yz + w’y’z + w’xyz’ = ? 8/27/2009

Consensus Denoted as ¢ For any two product terms where exactly one variable appears uncomplemented in one and complemented in the other, the consensus is defined as the product of the remaining literals. If no such variable exists or if more than one such variable exists, then the consensus us undefined. If we write one term as at1 and the second as a’t2 (where t1 and t2 represent product terms), then, if the consensus is defined, at1 ¢ a’t2 = t1t2 8/27/2009

Consensus Property Consensus P13a. at1 + a´t2 + t1t2 = at1 + a´t2 P13b. (a + t1)(a + t2)(t1 + t2)= (a + t1)(a + t2) 8/27/2009

Simplification with Consensus Can you simplify the following functions? bc’ + abd + acd = ? c’d’ + ac’ + ad + bd’ + ab = ? 8/27/2009

Convert SOP to Sum of Minterms Two approaches By developing a truth table By using P9a. (adjacency) to add variables to a term To convert POS to product of maxterms, use P9b. 8/27/2009

Convert between SOP and POS POSSOP: Use the following 3 properties (in this order) P8b. a + bc = (a + b)(a + c) P14a. ab + a’c = (a + c)(a’ + b) P8a. a (b + c) = ab + ac SOPPOS: Reverse the order (w + x’ + y)(w + x + z)(w’ + y’ + z) = ? wxy’ + xyz + w’x’z’ = ? 8/27/2009