Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.

Slides:



Advertisements
Similar presentations
Report on SEWG mixed materials EU PWI TF meeting Madrid 2007 V. Philipps on behalf of SEWG members Mixed material formation is a among the critical ITER.
Advertisements

Max-Planck-Institut für Plasmaphysik EURATOM Assoziation Interaction of nitrogen plasmas with tungsten Klaus Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner,
PWI Modelling Meeting – EFDA C. J. OrtizCulham, Sept. 7 th - 8 th, /8 Defect formation and evolution in W under irradiation Christophe J. Ortiz Laboratorio.
M. Reinelt, K. Schmid, K. Krieger SEWG High-Z Ljubljana Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
Kazuyoshi Sugiyama, SEWG meeting, Culham, July Outline: 1.Introduction 2.Experimental procedure 3.Result 4.Summary Kazuyoshi Sugiyama First.
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SWEG Deuterium retention in graphite samples exposed to beryllium-seeded.
SEWG Gas Balance 2007 © Matej Mayer First results on deuterium depth profiling in W tiles M. Mayer 1, V.Kh. Alimov, V. Rohde 1, J. Roth 1, A. Herrmann.
C. Björkas, K. Vörtler and K. Nordlund Department of Physics, University of Helsinki Joint TFE-SEWG - Material Migration and Material Mixing meeting MD.
D retention and release behaviour of Be/C/W mixed materials
Max-Planck-Institut für Plasmaphysik EURATOM Assoziation K. Schmid SEWG meeting on mixed materials Parameter studies for the Be-W interaction Klaus Schmid.
SEWG Mixed Materials Culham M. Oberkofler Martin Oberkofler, M. Reinelt, S. Lindig, M. Racinski, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik,
SEWG Meeting Mixed Materials 2007 First results from beryllium on carbon Florian Kost Christian Linsmeier.
Member of the Helmholtz Association Carbon based materials: fuel retention and erosion under ITER-like mixed species plasma conditions Arkadi Kreter et.
R. Doerner, EU SEWG meeting, JET. July 9-10, 2007 Co-deposition/Co-implantation R. Doerner, M. Baldwin, G. De Temmerman, D. Nishijima UCSD K. Schmid, Ch.
Institute for Plasma Physics Rijnhuizen D retention in W and mixed systems in Pilot-PSI G. De Temmerman a, K. Bystrov a, L. Marot b, M. Mayer c, J.J. Zielinski.
D retention in O-covered and pure beryllium
Analysis of samples exposed to Pilot–PSI Plasma P. Paris, A. Hakola, K. Bystrov, G. De Temmerman, M. Aints, I. Jõgi, M. Kiisk, J. Kozlova, M. Laan, J.
18 th International Conference on Plasma Surface Interaction in Controlled Fusion Toledo, Spain, May 26 – 30, Deuterium trapping in tungsten damaged.
Complex chemical interactions of lithium, deuterium, and oxygen on lithium-coated graphite PFC surfaces C.N. Taylor1, B. Heim1, J.P. Allain1, C. H. Skinner2,
1 EFFECTS OF CARBON REDEPOSITION ON TUNGSTEN UNDER HIGH-FLUX, LOW ENERGY Ar ION IRRADITAION AT ELEVATED TEMPERATURE Lithuanian Energy Institute, Lithuania.
L.B. Begrambekov Plasma Physics Department, Moscow Engineering and Physics Institute, Moscow, Russia Peculiarities, Sources and Driving Forces of.
PISCES R. Doerner, ITPA SOL/DIV meeting, Avila, Jan. 7-10, 2008 Mixed plasma species effects on Tungsten M.J. Baldwin, R.P. Doerner, D. Nishijima University.
Dynamic hydrogen isotope behavior and its helium irradiation effect in SiC Yasuhisa Oya and Satoru Tanaka The University of Tokyo.
Study of sputtering on thin films due to ionic implantations F. C. Ceoni, M. A. Rizzutto, M. H. Tabacniks, N. Added, M. A. P. Carmignotto, C.C.P. Nunes,
Y. Ueda, M. Fukumoto, H. Kashiwagi, Y. Ohtsuka (Osaka University)
November 8-9, “Engineering Analysis” of He Retention & Release Experiments to Determine Desirable Engineered W Armor Microstructure A. René Raffray.
Alloy Formation at the Co-Al Interface for Thin Co Films Deposited on Al(001) and Al(110) Surfaces at Room Temperature* N.R. Shivaparan, M.A. Teter, and.
1 R. Doerner, ARIES HHF Workshop, Dec.11, 2008 PMI issues beyond ITER Presented by R. Doerner University of California in San Diego Special thanks to J.
MSE-630 Dopant Diffusion Topics: Doping methods Resistivity and Resistivity/square Dopant Diffusion Calculations -Gaussian solutions -Error function solutions.
Dynamic evolution of mixed materials bombarded with multiple ions beams and impurities Tatyana Sizyuk Ahmed Hassanein School of Nuclear Engineering Center.
Ion-Driven Permeation of Deuterium through Tungsten Motivation Permeation experiment Results Next steps A. V. Golubeva, M. Mayer, J. Roth.
R. Doerner, May 9, 2005 PFC Program Review, PPPL PISCES ITER-simulation experiments on Mixed-Materials (Be, C, W) R. P. Doerner, M. J. Baldwin and D. Nishijima.
R. Doerner, IAEA CRP on H in Materials, Vienna, Sept. 26, 2006 Mixed-material studies in PISCES-B R. P. Doerner, M. J. Baldwin, J. Hanna and D. Nishijima.
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 G. S. Oehrlein*, T. Schwarz-Selinger, K. Schmid, M. Schlüter and W. Jacob Interaction of Deuterium.
Measurement and modeling of hydrogenic retention in molybdenum with the DIONISOS experiment G.M. Wright University of Wisconsin-Madison, FOM – Institute.
Sachiko Suzuki 1, Akira Yoshikawa 1, Hirotada Ishikawa 1, Yohei Kikuchi 1, Yuji Inagaki 1, Naoko Ashikawa 2, Akio Sagara 2, Naoaki Yoshida 3, Yasuhisa.
K. Sugiyama, 9th International Workshop on Hydrogen Isotopes in Fusion Reactor Materials, Salamanca, June 2-3, Max-Planck-Institut für Plasmaphysik.
R. P. Doerner, 2 nd PMIF Meeting, Juelich, Sept , 2011 Plasma interactions with Be surfaces R. P. Doerner, D. Nishijima, T. Schwarz-Selinger and.
Ion Implantation and Ion Beam Analysis of Silicon Carbide Zsolt ZOLNAI MTA MFA Research Institute for Technical Physics and Materials Science Budapest,
R. Doerner, ITPA SOL/DIV meeting, Avila, Jan. 7-10, R. P. Doerner, G. De Temmerman, M.J. Baldwin, D. Nishijima Center for Energy Research, University.
*This work was supported by the United States Department of Energy
Olga Ogorodnikova, 2008, Salamanka, Spain Comments to modelling of hydrogen retention and permeation in tungsten O.V. Ogorodnikova Max-Planck-Institut.
Updates of Iowa State University S. Dumpala, S. Broderick and K. Rajan Oct-2, 2013.
Effects of tungsten surface condition on carbon deposition
1 A. Kitamura, H. Iwai, R. Nishio, R. Satoh, A. Taniike and Y. Furuyama Department of Environmental Energy Science, Graduate School of Science and Technology,
Water in Laboratory J.R. Brucato INAF-Arcetri Astrophysical Observatory, Firenze Italy Water in Asteroids and Meteorites Paris.
Compositional dependence of damage buildup in Ar-ion bombarded AlGaN K. Pągowska 1, R. Ratajczak 1, A. Stonert 1, L. Nowicki 1 and A. Turos 1,2 1 Soltan.
COSIRES 2004 © Matej Mayer Bayesian Reconstruction of Surface Roughness and Depth Profiles M. Mayer 1, R. Fischer 1, S. Lindig 1, U. von Toussaint 1, R.
1 US PFC Meeting, UCLA, August 3-6, 2010 DIONISOS: Upgrading to the high temperature regime G.M. Wright, K. Woller, R. Sullivan, H. Barnard, P. Stahle,
The effect of displacement damage on deuterium retention in plasma-exposed tungsten W.R.Wampler, Sandia National Laboratories, Albuquerque, NM R. Doerner.
1 Deuterium retention and release in tungsten co- deposited layers G. De Temmerman a,b, and R.P. Doerner a a Center for Energy Research, University of.
MOLIBDENUM MIRRORS WITH COLUMN NANOGRAIN REFLECTING COATING AND EFFECT OF ION- STIMULATED DIFFUSION BLISTERRING RRC «Кurchatov Institute» А.V. Rogov, К.Yu.Vukolov.
10th ITPA conference, Avila, 7-10 Jan Changes of Deuterium Retention Properties on Metals due to the Helium Irradiation or Impurity Deposition M.Tokitani.
Ion Beam Analysis of the Composition and Structure of Thin Films
9 th International Workshop on Hydrogen Isotopes in Fusion Reactor Materials Salamanca, Spain, June 2 - 3, Simulation experiments on neutron damage.
The composition and structure of Pd-Au surfaces Journal of Physical Chemistry B, 2005, 109, C. W. Yi, K. Luo, T. Wei, and D. W. Goodman Bimetallic.
J. Roth: ITPA SOL/DIV, Avila, Jan Prediction of ITER T retention levels with W PFCs J. Roth, and the SEWG Fuel retention of the EU Task Force on.
The coating thermal noise R&D for the 3rd generation: a multitechnique investigation E. Cesarini 1,2), M.Prato 3), M. Lorenzini 2) 1)Università di Urbino.
Member of the Helmholtz Association Fuel Retention and Erosion of Metallic Plasma-Facing Materials under the Influence of Plasma Impurities A. Kreter 1,
1 ITC-22, November 2012, Toki, Japan 1 Modelling of impurity transport, erosion and redeposition in fusion devices: applications of the ERO code A. Kirschner.
Characterization of He implanted Eurofer97
en interaction avec des plasmas caractérisées par microscopie Raman
Study of vacuum stability at cryogenic temperature
What is XPS? XPS (x-ray photoelectron spectroscopy) is also known as ESCA (electron spectroscopy for chemical analysis). XPS provides chemical information.
Tatyana Sizyuk Ahmed Hassanein School of Nuclear Engineering
Australian Nuclear Science and Technology Organisation, Australia
Study of vacuum stability at cryogenic temperature
Analysis of samples exposed to Pilot–PSI Plasma
Multiscale modeling of hydrogen isotope transport in porous graphite
Deuterium retention for sample temperature of 500 K
Presentation transcript:

Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany PSI-1828 May 2008

Outline  Motivation  Results of thermal release experiments Variation of... * Irradiation fluence * Implantation temperature * BeO coverage  Modeling  Energy diagram of D / Be  Conclusion ITER cross section

D implantation into beryllium Deuterium retention / thermal recycling of ITER main wall Be: Fast reaction with O 2 / H 2 O Previous experiments: BeO contaminated surfaces Investigation of System Be (+BeO) / D Clean Be / D: NO DATA ! D implantation into beryllium Deuterium retention / thermal recycling of ITER main wall Be: Fast reaction with O 2 / H 2 O Previous experiments: BeO contaminated surfaces Investigation of System Be (+BeO) / D Clean Be / D: NO DATA ! Be: ~700 m 2 D,T Motivation

Be (+ BeO) 1 and 1.5 keV D implantation Motivation D,T Variation by 1 ORDER OF MAGNITUDE ! Variation by 1 ORDER OF MAGNITUDE ! Be: ~700 m 2 [Anderl et al. 1999]

Concept Issues to be solved: 1. Retention in pure Be ? 2. Crystallinity 3. Influence of BeO ? 4. Retention mechanisms ? Issues to be solved: 1. Retention in pure Be ? 2. Crystallinity 3. Influence of BeO ? 4. Retention mechanisms ? Possible reasons: 1. Undefined BeO coverage 2. Undefined crystallinity 3. Unclear retention mechanisms (Needed for quantification) Possible reasons: 1. Undefined BeO coverage 2. Undefined crystallinity 3. Unclear retention mechanisms (Needed for quantification)

Experimental concept Thermal release NRA TPD Temperature Programmed Desorption TPD Temperature Programmed Desorption Sequential release of D Limited by combination of bulk + surface processes Energy barriers for...  Diffusion  Detrapping  Recombination Sequential release of D Limited by combination of bulk + surface processes Energy barriers for...  Diffusion  Detrapping  Recombination Single crystalline Be Retention mechanisms 1 keV D implantation Hydrogen retention in situ... ( mbar) Ar sputter cleaning+ annealing XPS / LEIS: Control of surface Ar sputter cleaning+ annealing XPS / LEIS: Control of surface

TPD: Spectrum Sequential release: Energetically different rate limiting steps  1 keV D + Implantation (300 K)  2·10 17 D cm -2 m/q= 4 (D 2 )

TPD: Increasing fluence TPD Spectra recorded in random order !  Fluence dependent behaviour TPD Spectra recorded in random order !  Fluence dependent behaviour

TPD: Increasing fluence Trapping in ion induced defects

TPD: Increasing fluence Structural modifications Local saturation of available binding sites Local saturation of available binding sites Trapping in ion induced defects

TPD: Increasing fluence Structural modifications Sample saturation Threshold

Retention: Simulation by SDTrim.SP Super saturation zone D accumulation in a depth of 40 nm Bulk saturation concentration: 26 at% D (D/Be = 0.35) * Supersaturation * Structural modifications: Surface process? D accumulation in a depth of 40 nm Bulk saturation concentration: 26 at% D (D/Be = 0.35) * Supersaturation * Structural modifications: Surface process? (cut off) SDTrim.SP Calculation TPD Experiments

Structural modifications / Surface desorption 1 st order release 1 D Trapped  D Mobile 2 nd order release 2 D  D 2 (Surface desorption)

Structural modifications / Surface desorption * Peak shape Desorption peak is 1st order * Surface area (AFM) Release of 60 x Θ (saturation coverage Θ ~ 0.5) AFM: max. 1.2 Θ  Surface recom- bination is not the rate-limiting step * Peak shape Desorption peak is 1st order * Surface area (AFM) Release of 60 x Θ (saturation coverage Θ ~ 0.5) AFM: max. 1.2 Θ  Surface recom- bination is not the rate-limiting step

TPD: Influence of BeO-coverage No change of E A of release from binding states No recombination limit ↔ Trapping in the bulk Formation of BeO-D at the surface No change of E A of release from binding states No recombination limit ↔ Trapping in the bulk Formation of BeO-D at the surface BeO:D (surface)

TPD: Elevated implantation temperatures 300K 530 K

TPD: Elevated implantation temperatures 300K 530 K Different retention mechanism ! Change of the binding states in the supersaturated areas Different retention mechanism ! Change of the binding states in the supersaturated areas Ion-induced trap sites unaffected

TPD: Elevated implantation temperatures 300K 530 K Different retention mechanism ! Change of the binding states in the supersaturated areas BeD 2 formation (Decomposition ~ 570 K) Different retention mechanism ! Change of the binding states in the supersaturated areas BeD 2 formation (Decomposition ~ 570 K) Ion-induced trap sites unaffected BeD 2 BeO:D (surface)

Implanted / Co-deposited 1 keV Ion implanted (this work) D/Be plasma co-deposited (de Temmerman) 300 K

Implanted / Co-deposited Supersaturated material Supersaturated material 1 keV Ion implanted (this work) D/Be plasma co-deposited (de Temmerman)

300 K Implanted / Co-deposited Ion-induced traps in the bulk 1 keV Ion implanted (this work) D/Be plasma co-deposited (de Temmerman)

300 K 600 K 530 K Implanted / Co-deposited Formation of BeD 2 see also poster P3-05 by R. Doerner Formation of BeD 2 see also poster P3-05 by R. Doerner

Qualitative interpretation of data [Anderl et al. 1999] clean Be (1 keV) Be (+ BeO) 1 and 1.5 keV Structural modifications BeD 2 Ion-induced traps in the bulk lattice ~ Constant retention Specimen exposure temperature [K]

Identification of retention mechanisms Quantification: TMAP7 / Rate equations

TMAP7: D transport bulk / surface Input parameters Trap concentration profile by SDTrim.SP Saturated trap sites (TPD) Temperature ramp (TPD) Literature: Diffusion barrier 0.29 eV Dissolution energy 0.1 eV Free parameters Detrapping energies E T1 = 1.88 eV E T2 = 2.05 eV Detrapping energies E T1 = 1.88 eV E T2 = 2.05 eV

Schematic energy diagram E (D-Atom) TPD – Spectrum  Activation energies Atomic D E 0 ≡ 0 Position / State 0 Temperature [K] Desorption rate [a.u.]

Schematic energy diagram [E S = eV] Atomic D E 0 ≡ 0 E (D-Atom) Positions in the undisturbed bulk lattice Mobile state [ΔE D = 0.29 eV] Temperature [K] Desorption rate [a.u.]

Schematic energy diagram [E S = eV] Atomic D E 0 ≡ 0 Surface E (D-Atom) Surface processes Mobile state [ΔE D = 0.29 eV] [ΔE Ad = 0.87 eV] Molecular D 2 [E BE (1/2 D 2 ) = eV] Temperature [K] Desorption rate [a.u.]

Schematic energy diagram [E S = eV] Atomic D E 0 ≡ 0 [ΔE Ad = 0.87 eV] Molecular D 2 [E BE (1/2 D 2 ) = eV] Surface Mobile state [ΔE D = 0.29 eV] E (D-Atom) Activation energies obtained from modeling of TPD spectra Temperature [K] Desorption rate [a.u.]

Schematic energy diagramm [E S = eV] Atomic D E 0 ≡ 0 [ΔE Ad = 0.87 eV] Molecular D 2 [E BE (1/2 D 2 ) = eV] Surface Mobile state [ΔE D = 0.29 eV] ΔE = 1.25 eV 1.33 eV E (D-Atom) ΔE = 1.88 eV 2.05 eV Ion-induced defects Supersaturated states Activation energies obtained from modelling of TPD spectra BeD 2 Temperature [K] Desorption rate [a.u.]

Conclusion Deuterium retention in beryllium  Binding states / retention mechanisms identified and quantified  Hydrogen retention in ITER: negligible contribution of "pure" Be wall (< 7 g T by implantation)  Thin BeO surface layers are not rate-limiting for thermal recycling  Formation of BeD 2 at elevated temperatures  Currently: DFT calculations  Detailed understanding of D / Be Deuterium retention in beryllium  Binding states / retention mechanisms identified and quantified  Hydrogen retention in ITER: negligible contribution of "pure" Be wall (< 7 g T by implantation)  Thin BeO surface layers are not rate-limiting for thermal recycling  Formation of BeD 2 at elevated temperatures  Currently: DFT calculations  Detailed understanding of D / Be

Appendix

Literature data [Lossev,Küppers 1993] Surface desorption ?

Substrate characterization: SEM Cleaning: Cycles of 3 keV Ar + / 1000 K  Recrystallization + erosion Cleaning: Cycles of 3 keV Ar + / 1000 K  Recrystallization + erosion

Substrate characterization: SEM (1010) (1120) T  1000 K, several hours: Recrystallization to low indexed facets T  1000 K, several hours: Recrystallization to low indexed facets SEM

Substrate characterization: AFM 500 nm Recrystallization Erosion D Induced structural modifications Recrystallization Erosion D Induced structural modifications AFM Cycles of Cleaning D Implantation Degassing 1000 K Cycles of Cleaning D Implantation Degassing 1000 K

SEM: bubble & channel formation ? This work: Anderl et al. [1992]: Higher fluences  Const. retention  Aggregation !  Bubbles, pores, OPEN channels Higher fluences  Const. retention  Aggregation !  Bubbles, pores, OPEN channels Fluence ≤ 4·10 17 D cm -2  CLOSED nanosized structural modifications ! Fluence ≤ 4·10 17 D cm -2  CLOSED nanosized structural modifications !

Chemical surface composition BeO coverage < 0.2 ML < 1day ( mbar) > 1000 K BeO coverage < 0.2 ML < 1day ( mbar) > 1000 K Cleaning by Ar + bombardment Annealing 1000 K Cleaning by Ar + bombardment Annealing 1000 K XPS cleaned & annealed