SGFP Lube Oil Systems & Maintenance – Part 2

Slides:



Advertisements
Similar presentations
Steam and Water Accessories
Advertisements

Service Delivery 3 Pumps.
3.4.5 Student Book © 2004 Propane Education & Research CouncilPage Maintaining Bulk Plant Pumps, Strainers and Bypass Systems Knowing how to maintain.
Cooling System Get the engine up to optimum operating Temperature as quickly as possible and maintains it at that temperature. Controls the heat produced.
Metering Pump Spare Parts Replacement. Pump Components (Metering Pump) Pumps are supplied with a 120VAC or 240VAC power cord. Use care to ensure pump.
JET PROPULSION Part 5 Jet Engine Operation Oil Systems.
UL/FM Fire Pump Systems Lunch & Learn 04/18/05
Labyrinth seal into two halves
Propulsion Train & Shaft Line Components
HVACR 317 – Refrigeration Core
Hydraulics.
Proper Pump Installation Practices
Introduction to FLUID COPLING.
1 Oil oxidation impact on Feed pump and turbine performance Presenter: Walter Bischoff.
FSRUG Feedwater Systems Reliability Users Group (Jan 2015) San Antonio, TX Performance Testing & Commissioning Presenter: Art Washburn, P.E.
2 July Turbine Condensate System
Pump Installation Vigyan Ashram, Pabal.
What is going on inside a packed stuffing box?
COMPRESSOR BASICS.
Fuel/Lube Oil Systems - AND – Propulsion Train & Shaft Line Components
Fuel Oil Systems Fuel Oil Systems consist of: Storage Tanks Pumps
STEAM HEATING.
Hydronic Mechanical Controls
Air Compressors.
TURBINE & COOLING SYSTEM Presented By – AVIJEET PRATAP 07ME12 IET AGRA
Reciprocating pump Pumps are used to increase the energy level of water by virtue of which it can be raised to a higher level. Reciprocating pumps are.
Pacific school of Engineering , surat A Presentation on
Hydraulics For The Long Term
Water Pumps.
1 Fuel Pumps. 2 Pumps 1.All oil burners for residential heating have pumps A. They are connected to a motor through a coupling 2.Description A. An oil.
FSRUG Feedwater Systems Reliability Users Group (Jan 2014) San Antonio, TX Stuffing Box Design & Configurations Presenter: Art Washburn, P.E.
CHAPTER 4 CPB 20004: Plant Utility n Maintenance
Fire Pump Functions The main function of a fire pump is to increase the pressure of the water that flows through it. Inadequate or nonexistent municipal.
Components of Centrifugal pumps
Plan 2 – Dead-end Seal Chamber Optional Jacket
Dr. subhash technical campus
AIR BEARING SYSTEM.
PUMPS, VALVES, & FANS …Moving fluids Objectives Comprehend the basic construction and application of valves used Comprehend the basic construction and.
Diesel Engine Power Plant Prepared By: Nimesh Gajjar
Metso - Slurry Pumping.
Harris Plant – Loss of Main Feed Pump Lube Oil INPO ICES # HNP Root Cause Evaluation
Parul Institute of Technology
Parul Institute of Engineering & Technology Subject Code : Name Of Subject : Fluid Power Engineering Name of Unit : Pumps Topic : Reciprocating.
Parul Institute of Engineering & Technology Subject Code : Name Of Subject :Fluid Power Engineering Topic :Rotodynamic Pumps.
Variable Speed Applied to Pumps. Life Cycle Costs - Courtesy of Hydraulic Institute and Europump Initial cost is not the only cost associated with a pump.
FSRUG Feedwater Systems Reliability Users Group (Jan 2013) San Antonio, TX SGFP Lube Oil Systems & Maintenance – No Problems Presenter: Art Washburn, P.E.
OILGEAR PVV PUMPS PVV 200 Performance Curves.
The Cooling System (Reasons for)
Educational Services 1 LNN Family Split Case Pumps.
Prepared By Rohit G. Sorte M.Tech
A.D PATEL INST OF TECH. NAME : SETA BHAUMIK D. ( ) TOPIC : CENTRIFUGAL PUMPS FACULTY : BHAUMIK SHETH.
TYPE “HOS” 6” Stroke Compressor & Ancillary Equipment
FLUID POWER CONTROL ME604C. FLUID POWER MODULE:02 ~ HYDRAULIC SYSTEM COMPONENTS.
Fluid Mechanics for Chemical Engineers Arif Hussain (Lecturer)
Vertical Pump Motor Manifold Upgrade. VPMM Replaces Existing Pumps, Motors, Relief Valves, Check Valves, Discharge Filters, Pump Running Pressure Gauges,
IN THE NAME OF ALLAH, THE BENEFICENT, THE MERCIFUL
Engine Cooling Systems
Desert Cooler.
Engine Lubrication Systems
ARAC/H/F Air-cooled water chillers, free-cooling chillers and heat pumps Range: kW.
System One Pumps S1-101 Construction and Features
Water in Oil – Feedwater Pump Point Beach Nuclear Plant
Engine Lubrication Systems
Solving Bearing Misalignment Issues for STP Feed Pumps
Cooling System Get the engine up to optimum operating Temperature as quickly as possible and maintains it at that temperature. Controls the heat produced.
Cooling System Get the engine up to optimum operating Temperature as quickly as possible and maintains it at that temperature. Controls the heat produced.
 PURPOSE OF LUB OIL SYSTEM In the 250 MW KWU turbines :  Single oil is used for  A] Lubrication Of All Bearings,  B] Control Oil For Governing System.
Presentation transcript:

SGFP Lube Oil Systems & Maintenance – Part 2 FSRUG Feedwater Systems Reliability Users Group (Jan 2014) San Antonio, TX SGFP Lube Oil Systems & Maintenance – Part 2 Presenter: Art Washburn, P.E.

FSRUG

DISCUSSION POINTS FSRUG Two Rules to Get You Home and Plant Priorities Lubrication Oil Systems – Types Lubrication System – Static Sump Lubrication System – Forced Feed Grease and Oil Mist Injection Oil Ring Submergence Oil Ring Journal Surface Peripheral Velocity Limit Oil Ring – Maintenance Forced Feed – Drain Piping Forced Feed System – Challenges Water Intrusion – Traditional Oil Deflector vs. INPRO Deflector Industry Events Source References

FSRUG Two Rules:

Rule #1 – Make Conservative Decisions FSRUG Two Rules: Rule #1 – Make Conservative Decisions

Rule #1 – Make Conservative Decisions FSRUG Two Rules: Rule #1 – Make Conservative Decisions Rule #2 – Maintain Design Control

Rule #1 – Make Conservative Decisions FSRUG Two Rules: Rule #1 – Make Conservative Decisions Rule #2 – Maintain Design Control Plant Priorities:

Rule #1 – Make Conservative Decisions FSRUG Two Rules: Rule #1 – Make Conservative Decisions Rule #2 – Maintain Design Control Plant Priorities: Nuclear Safety

Rule #1 – Make Conservative Decisions FSRUG Two Rules: Rule #1 – Make Conservative Decisions Rule #2 – Maintain Design Control Plant Priorities: Nuclear Safety Legal Requirements

Rule #1 – Make Conservative Decisions FSRUG Two Rules: Rule #1 – Make Conservative Decisions Rule #2 – Maintain Design Control Plant Priorities: Nuclear Safety Legal Requirements Efficiency

Lubrication System – Static Sump FSRUG Lubrication System – Static Sump

Lubrication System – Static Sump FSRUG Lubrication System – Static Sump Bearing Housing contains oil as a static sump API-610: Oil Rings (and flingers) used to deliver oil (GPM) to the bearings shall have an operating submergence of 0.12" or 0.25" above the lower edge of the bore of an oil ring. Flingers are positively attached secured to the shaft. Oil is lifted by oil ring to shaft and flows to bearing Oil can be lifted by oil ring and flows to an internal cast trough in bearing housing and flows to bearing Heat Sink: Oil Cooler located in bottom of sump in the oil or cast in the Bearing Housing. Pumpage or separate closed cooling water system.

Oil Ring Submergence FSRUG Particulate in Oil? Stability issues identified in the 1990s. Testing identified oil rings can go unstable and bounce around. Mechanical contact inside the bearing housing would nick off pieces of oil ring (non-ferrous, silicon bronze). Particulate in oil (non-ferrous). Increased submergence improved stability of oil rings and oil delivery (GPM). The multitude of pumps in the Field operate satisfactory. Look for particulate (oil ring material) from oil sampling.

Oil Ring Submergence FSRUG Particulate in Oil? Drive End or Thrust End Design for Between Bearing Pump: Oil Rings – Same size (minimizes risk on installing in wrong location) Oil Submergence in both bearing housings (same oil level) Oil Ring Submergence – different on each end Reason: Journal surface for oil ring can be different – Drive End shaft diameter can be larger to transmit torque Submergence may be more shallow on drive end Look for oil ring particulate on drive end. Solution: If particulate present, then Increase submergence

Oil Ring Journal Surface Peripheral Velocity Limit FSRUG Oil Ring Journal Surface Peripheral Velocity Limit Oil Ring Rides on a Journal Surface Journal Surface Peripheral Velocity Limit, 45 to 59 fps Peripheral Velocity = [π x D/12] x RPM/60, in fps (FT/Sec) At 45 fps, Slip commences between the oil ring and journal surface and degrades delivery of oil (GPM) At 59 fps slip continues to degrade delivery of oil (GPM), until a Force Feed Lubrication System would be required.

Oil Ring - Maintenance FSRUG Consider Oil Ring as a consumable item Replace Oil Ring when bearing housing is disassembled Oil Ring can wear over time and affect performance (delivery of oil)

Oil Ring – Example of Damage FSRUG Oil Ring – Example of Damage

Oil Ring – Example of Damage FSRUG Oil Ring – Example of Damage

Oil Ring – Example of Damage FSRUG Oil Ring – Example of Damage

Forced Feed Lubrication System FSRUG Forced Feed Lubrication System Typical Schematic

Forced Feed Lubrication System FSRUG Forced Feed Lubrication System Pressure Setting Logic:

Forced Feed Lubrication System FSRUG Forced Feed Lubrication System Bearing Housing Assemblies w/Oil Pump

Forced Feed Lubrication System FSRUG Forced Feed Lubrication System Reservoir Layout

Forced Feed Lubrication System FSRUG Forced Feed Lubrication System Separate Ancilliary System to Main Pump includes: Reservoir (suction source) Oil Pumps: Shaft Driven off main pump Thrust Bearing Housing (and coupled) Auxiliary pump (electric AC, optional DC) mounted vertically on top of Reservoir Pressure regulator (relief valve) for both oil pumps in Reservoir Lube oil supply piping with oil cooler, filter (duplex) Reverse Rotation Protection for the Shaft Driven Oil Pump

Forced Feed Lubrication System FSRUG Forced Feed Lubrication System Continued: Supply Tubing Feeds Bearings (e.g., Drive End Bearing, Non-Drive Thrust End Bearing) Supply Oil flow to each bearing (GPM) is metered by an orifice to each bearing (Typical Example): Journal Bearing (Orifice 0.093" Dia, Pressure 12 PSIG, Flow 0.6 GPM x 2 bearings) Tilt Pad Trust Bearing (Orifice x" Dia, Pressure 12 PSIG, Flow 1.12 GPM per Side – Active and Inactive) Leakoff through relief valve Total Capacity: 3.44 GPM Plus leakoff Option to Feed Driver (Motor) Bearings

Forced Feed Lubrication System FSRUG Forced Feed Lubrication System Standard Rule for Supplying Forced Feed Lube System: Electric Driver (motor) – Pump Supplier provides Lube System Turbine Driver – Turbine Supplier provides Lube System Ball Radial / Ball Thrust Bearing Arrangement can be Lubricated by Static Sump or Pressure Lube Sleeve Radial / Ball Thrust Bearing Arrangement can be Lubricated by Static Sump or Pressure Lube Tilt Pad Type Thrust Bearing Arrangement requires Pressure Lube

Forced Feed – Drain Piping FSRUG Forced Feed – Drain Piping Gravity Drains from bearing housing(s) to reservoir Bearing Housings must be well vented Drain line designed to be half full to assure vented from bearing housing back to reservoir Hard Pipe (not flex hose) Drain line sloped: Example, 2" Schedule 80 Pipe 0.25"/FT Slope (4.28 GPM) 0.50"/FT Slope (8.56 GPM) Reservoir Level (Normal Operation) – below drain line [Maintain design required level with a range]

Forced Feed – Drain Piping FSRUG Forced Feed – Drain Piping

Forced Feed – Reservoir Level Above Drain Piping FSRUG Forced Feed – Reservoir Level Above Drain Piping

Forced Feed – Bearing Housings to be Well Vented FSRUG Forced Feed – Bearing Housings to be Well Vented

Forced Feed – Bearing Housings to be Well Vented FSRUG Forced Feed – Bearing Housings to be Well Vented

FSRUG Forced Feed – Drain Header Vertical Piping Replaced with Metallic Flex Hoses/Fittings (likely Choking the drainage)

Forced Feed – Drain Piping for Motor Driven Assy FSRUG Forced Feed – Drain Piping for Motor Driven Assy

Forced Feed – Drain Piping for Turbine Driven Assy FSRUG Forced Feed – Drain Piping for Turbine Driven Assy

Forced Feed System – Challenges FSRUG Forced Feed System – Challenges Replacement Relief Valve (Obsolesence) – Minor Mounting Changes Results in re-plumbing reservoir internals

Forced Feed System – Challenges FSRUG Forced Feed System – Challenges Changes in Supply Oil Pressure to improve heat sink with increased flow potential impact to pressure switch setpoints potentially impacts maximum capacity of pump to supply oil to bearings and relief valve. Supply Orifice is integral to bearing housing One plant added orifice outside of bearing housing. Now have 2 orifices in series. Now required to run lube oil supply pressure at 24 psig to deliver the required oil.

Forced Feed System – Challenges FSRUG Forced Feed System – Challenges Original lube oil pumps were designed for Clock-Wise (CW) Rotation. Pumps are gear type positive displacement. The thrust plate is installed on the pump to handle thrust from "CW" rotation. Original pumps were allowed to operate Counter-Clock-Wise (CCW) rotation; however, thrust plate was never installed on the opposite end of the pump for thrust. The CCW pump thrust condition was accepted as long as pump differential pressure was limited to 24 psig (max).

Industry Events: FSRUG 1989 - Plant Turbine Trip with Loss of Lubrication Oil for Turbine, Generator and Excitor Bearings. Causes: Backup AC and DC Oil Pumps were not periodically tested to assure function DC Backup Oil Pump tripped from protective relay (not sized properly) Reliability Issues for System Cause: Excessive moisture in oil. Water in Oil – 3 Types: Free Water, Emulsified, Relative Humidity Most common Water Separation System: Bowser (WWII Technology) – branch side stream oil and enter a sudden enlargement; slows velocity down and allows free water and some emulsified water to separate. Bowser Type System replaced with Coalescing Filters: Removes the 3 types of water present in the system. Improves system reliability and shortens outages for startup.

Industry Events: FSRUG 2011 - Plant Turbine Trip with Loss of Offsite Power Results in Loss of Oil to Main Feedwater Pump / Turbine and Bearing Damage Cause: DC Backup Oil Pump Failed to Provide Oil to Main Feedwater Pump and Turbine Drive Bearings. 2011 – Main FW Pump Loss of Main Oil Pump Results in Pump Shut Down and Reduced Plant Power Output Cause: Shaft Driven Oil Pump coupling disengages from Main Feedwater Pump 2012 – Plant Main Transformer Fire, Subsequent Turbine Trip and Turbine / Generator Bearing Damage Cause: DC Backup Oil Pump tripped from protective relay

Industry Events: FSRUG 2014 – Freezing Weather, Heater Drain Pump Packingless Stuffing Box dP Sensing Lines Freeze, Loss of Stuffing Box dP, Reduced Plant Power, Secured Heater Drain Pump, Pump Discharge Check Valve Leaked By, Pump Rotated Backwards. Forced Feed Lube System – No Aux Backup Oil Pump (Thrust Bearing Failed and Melted Drive Coupling), Main Lube Oil Shaft Driven Pump – No Reverse Rotation Protection (Lube Oil Pump Failed). Lost Generation Until Parts Replaced. Cause: Vintage Forced Feed Lube Oil System Lacking Features to Adequately Protect the Main Pump and Equipment. 2014 – Safety Related Horizontal Raw Water Pump. Forced Feed Lube Oil System Drain Header Backing Up and Leaking Oil from Drive End Bearing Housing. Cause: Brg Hsg Not Well Vented (clogged), Header Slope (not per spec), Flex Hose Fittings choking capacity to drain

FSRUG Water Intrusion – Traditional Oil Deflector vs. INPRO Deflector See EPRI NMAC Lube Notes, November 2004, Bearing Operation with an Oil-Water Mixture

SOURCE REFERENCES: FSRUG Centrifugal Pumps: Design & Application, Lobanoff and Ross (practical application) Centrifugal and Axial Flow Pumps, Stepanoff (theory) Centrifugal Pumps, Gülich Vertical Turbine, Mixed Flow & Propeller Pumps, Dicmus Centrifugal Pump Handbook, Sulzer Pump Handbook, Karassik Centrifugal Pump Clinic, Karassik Centrifugal Pumps Selection & Operation, Karassik Centrifugal Pumps, Karassik API-614: Lubrication, Shaft Sealing and Oil-Control Systems & Auxiliaries

FSRUG

FSRUG THE (HAPPY) END QUESTIONS ?