Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, 2006 Numerical Algebraic Geometry Andrew Sommese University of Notre Dame.

Slides:



Advertisements
Similar presentations
LAPLACE TRANSFORMS.
Advertisements

Levelsets in Workspace Analysis. F(X,Y,Z) = S1(Z). S2(X,Y,Z) = 0 S2: algebraic surface of degree 12.
Inverse Kinematics Professor Nicola Ferrier ME 2246,
Review for Test 3.
Algebraic, transcendental (i.e., involving trigonometric and exponential functions), ordinary differential equations, or partial differential equations...
MATH 685/ CSI 700/ OR 682 Lecture Notes
Solving Linear Systems (Numerical Recipes, Chap 2)
Trajectory Generation
Colloquium, School of Mathematcs University of Minnesota, October 5, 2006 Computing the Genus of a Curve Numerically Andrew Sommese University of Notre.
Lecture 17 Introduction to Eigenvalue Problems
Chapter 9 Gauss Elimination The Islamic University of Gaza
Linear Algebraic Equations
Ch 7.9: Nonhomogeneous Linear Systems
Computing the Rational Univariate Reduction by Sparse Resultants Koji Ouchi, John Keyser, J. Maurice Rojas Department of Computer Science, Mathematics.
Scaling Personalized Web Search Glen Jeh, Jennfier Widom Stanford University Presented by Li-Tal Mashiach Search Engine Technology course (236620) Technion.
Algebraic Geometry and Applications Seminar IMA, September 13, 2006 Solving Polynomial Systems by Homotopy Continuation Andrew Sommese University of Notre.
Zeros of Polynomial Functions
Ordinary Differential Equations (ODEs) 1Daniel Baur / Numerical Methods for Chemical Engineers / Implicit ODE Solvers Daniel Baur ETH Zurich, Institut.
Determination of dimension of variety & some applications Author: Wenyuan Wu Supervisor: Greg Reid.
MOHAMMAD IMRAN DEPARTMENT OF APPLIED SCIENCES JAHANGIRABAD EDUCATIONAL GROUP OF INSTITUTES.
Komplexe Analysis, Oberwolfach, August 31, 2006 Exceptional Sets and Fiber Products Andrew Sommese University of Notre Dame Charles Wampler General Motors.
1 Chapter 9 Differential Equations: Classical Methods A differential equation (DE) may be defined as an equation involving one or more derivatives of an.
Ordinary Differential Equations (ODEs)
THE REAL NUMBERS College Algebra. Sets Set notation Union of sets Intersection of sets Subsets Combinations of three or more sets Applications.
MATH 685/ CSI 700/ OR 682 Lecture Notes Lecture 6. Eigenvalue problems.
Velocities and Static Force
Differential Equations
Algebra Seeing Structure in Expressions Arithmetic with Polynomials and Rational Expressions Creating Equations Reasoning with Equations and Inequalities.
Algebra Review. Polynomial Manipulation Combine like terms, multiply, FOIL, factor, etc.
Polynomial and Rational Functions
Geometric Design of Mechanically Reachable Surfaces J. Michael McCarthy and HaiJun Su University of California, Irvine Mathematics Seminar California State.
1 CE 530 Molecular Simulation Lecture 7 David A. Kofke Department of Chemical Engineering SUNY Buffalo
System of Linear Equations Nattee Niparnan. LINEAR EQUATIONS.
Interpolation. Interpolation is important concept in numerical analysis. Quite often functions may not be available explicitly but only the values of.
Sistem Kontrol I Kuliah II : Transformasi Laplace Imron Rosyadi, ST 1.
CIS V/EE894R/ME894V A Case Study in Computational Science & Engineering HW 5 Repeat the HW associated with the FD LBI except that you will now use.
Bertini: A software package for numerical algebraic geometry Developed by: Dan Bates Jon Hauenstein Andrew Sommese Charles Wampler.
Chapter 8. Section 8. 1 Section Summary Introduction Modeling with Recurrence Relations Fibonacci Numbers The Tower of Hanoi Counting Problems Algorithms.
1 Part II: Linear Algebra Chapter 8 Systems of Linear Algebraic Equations; Gauss Elimination 8.1 Introduction There are many applications in science and.
ME451 Kinematics and Dynamics of Machine Systems Numerical Solution of DAE IVP Newmark Method November 1, 2013 Radu Serban University of Wisconsin-Madison.
MATH – High School Common Core Vs Tested Kansas Standards Please note: For informational purposes, all Common Core standards are listed, and the tested.
Math / Physics 101 GAM 376 Robin Burke Fall 2006.
FoCM 2008, Hong Kong Regeneration: A New Algorithm in Numerical Algebraic Geometry Charles Wampler General Motors R&D Center (Adjunct, Univ. Notre Dame)
Copyright © Cengage Learning. All rights reserved. 4 Quadratic Functions.
On the Use of Sparse Direct Solver in a Projection Method for Generalized Eigenvalue Problems Using Numerical Integration Takamitsu Watanabe and Yusaku.
Dan Bates University of Notre Dame Charles Wampler GM Research & Development Bertini: A new software package for computations in numerical algebraic geometry.
Numerical Methods.
Raquel A. Romano 1 Scientific Computing Seminar May 12, 2004 Projective Geometry for Computer Vision Projective Geometry for Computer Vision Raquel A.
Kinematic Synthesis 2 October 8, 2015 Mark Plecnik.
Perfidious Polynomials and Elusive Roots Zhonggang Zeng Northeastern Illinois University Nov. 2, 2001 at Northern Illinois University.
Chapter 9 Gauss Elimination The Islamic University of Gaza
Outline: Introduction Solvability Manipulator subspace when n<6
5 Systems and Matrices © 2008 Pearson Addison-Wesley. All rights reserved Sections 5.1–5.5.
Trajectory Generation
The numerical computation of the multiplicity of a component of an algebraic set Dan Bates (IMA) Joint work with: Chris Peterson (Colorado State) Andrew.
Understanding the difference between an engineer and a scientist There are many similarities and differences.
Lecture 14: Pole placement (Regulator Problem) 1.
Workshop on Software for Algebraic Geometry October 23-27, 2006 What should a software package for Numerical Algebraic Geometry be? Charles Wampler General.
Level 2 Certificate Further Mathematics 8360 Route Map
Lecture 4 Complex numbers, matrix algebra, and partial derivatives
Computation of the solutions of nonlinear polynomial systems
Numerical Polynomial Algebra and Algebraic Geometry
Manipulator Dynamics 1 Instructor: Jacob Rosen
Advanced Engineering Mathematics 6th Edition, Concise Edition
MTH1170 Integration by Partial Fractions
Date of download: 11/15/2017 Copyright © ASME. All rights reserved.
d-Fold Hermite-Gauss Quadrature and Computation of Special Functions
Chapter 27.
Design Synthesis Fundamental Problem – locate a point (or set of points) fixed in a moving body that will pass through a series of points in space that.
Chapter 4 . Trajectory planning and Inverse kinematics
Presentation transcript:

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, 2006 Numerical Algebraic Geometry Andrew Sommese University of Notre Dame

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Reference on the area up to 2005: A.J. Sommese and C.W. Wampler, Numerical solution of systems of polynomials arising in engineering and science, (2005), World Scientific Press. Recent articles are available at

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Overview Solving Polynomial Systems Computing Isolated Solutions Homotopy Continuation Case Study: Alt’s nine-point path synthesis problem for planar four-bars Positive Dimensional Solution Sets How to represent them Decomposing them into irreducible components Numerical issues posed by multiplicity greater than one components Deflation and Endgames Bertini and the need for adaptive precision A Motivating Problem and an Approach to It Fiber Products A positive dimensional approach to finding isolated solutions equation-by- equation

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Solving Polynomial Systems Find all solutions of a polynomial system on :

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Why? To solve problems from engineering and science.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Characteristics of Engineering Systems systems are sparse: they often have symmetries and have much smaller solution sets than would be expected.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Characteristics of Engineering Systems systems are sparse: they often have symmetries and have much smaller solution sets than would be expected. systems depend on parameters: typically they need to be solved many times for different values of the parameters.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Characteristics of Engineering Systems systems are sparse: they often have symmetries and have much smaller solution sets than would be expected. systems depend on parameters: typically they need to be solved many times for different values of the parameters. usually only real solutions are interesting

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Characteristics of Engineering Systems systems are sparse: they often have symmetries and have much smaller solution sets than would be expected. systems depend on parameters: typically they need to be solved many times for different values of the parameters. usually only real solutions are interesting. usually only finite solutions are interesting.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Characteristics of Engineering Systems systems are sparse: they often have symmetries and have much smaller solution sets than would be expected. systems depend on parameters: typically they need to be solved many times for different values of the parameters. usually only real solutions are interesting. usually only finite solutions are interesting. nonsingular isolated solutions were the center of attention.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Computing Isolated Solutions Find all isolated solutions in of a system on n polynomials :

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Solving a system Homotopy continuation is our main tool: Start with known solutions of a known start system and then track those solutions as we deform the start system into the system that we wish to solve.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Path Tracking This method takes a system g(x) = 0, whose solutions we know, and makes use of a homotopy, e.g., Hopefully, H(x,t) defines “paths” x(t) as t runs from 1 to 0. They start at known solutions of g(x) = 0 and end at the solutions of f(x) at t = 0.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, The paths satisfy the Davidenko equation To compute the paths: use ODE methods to predict and Newton’s method to correct.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Solutions of f(x)=0 Known solutions of g(x)=0 t=0 t=1 H(x,t) = (1-t) f(x) + t g(x) x 3 (t) x 1 (t) x 2 (t) x 4 (t)

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Newton correction prediction {  t x j (t) x* 0 1

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Algorithms middle 80’s: Projective space was beginning to be used, but the methods were a combination of differential topology and numerical analysis with homotopies tracked exclusively through real parameters. early 90’s: algebraic geometric methods worked into the theory: great increase in security, efficiency, and speed.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Uses of algebraic geometry Simple but extremely useful consequence of algebraicity [A. Morgan (GM R. & D.) and S.] Instead of the homotopy H(x,t) = (1-t)f(x) + tg(x) use H(x,t) = (1-t)f(x) +  tg(x)

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Genericity Morgan + S. : if the parameter space is irreducible, solving the system at a random points simplifies subsequent solves: in practice speedups by factors of 100.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Endgames (Morgan, Wampler, and S.) Example: (x – 1) 2 - t = 0 We can uniformize around a solution at t = 0. Letting t = s 2, knowing the solution at t = 0.01, we can track around |s| = 0.1 and use Cauchy’s Integral Theorem to compute x at s = 0.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Special Homotopies to take advantage of sparseness

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Multiprecision Not practical in the early 90’s! Highly nontrivial to design and dependent on hardware Hardware too slow

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Hardware Continuation is computationally intensive. On average: in 1985: 3 minutes/path on largest mainframes.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Hardware Continuation is computationally intensive. On average: in 1985: 3 minutes/path on largest mainframes. in 1991: over 8 seconds/path, on an IBM 3081; 2.5 seconds/path on a top-of-the-line IBM 3090.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Hardware Continuation is computationally intensive. On average: in 1985: 3 minutes/path on largest mainframes. in 1991: over 8 seconds/path, on an IBM 3081; 2.5 seconds/path on a top-of-the-line IBM : about 10 paths a second on an single processor desktop CPU; 1000’s of paths/second on moderately sized clusters.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, A Guiding Principle then and now Algorithms must be structured – when possible – to avoid paths leading to singular solutions: find a way to never follow the paths in the first place.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Continuation’s Core Computation Given a system f(x) = 0 of n polynomials in n unknowns, continuation computes a finite set S of solutions such that: any isolated root of f(x) = 0 is contained in S; any isolated root “occurs” a number of times equal to its multiplicity as a solution of f(x) = 0; S is often larger than the set of isolated solutions.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, References A.J. Sommese and C.W. Wampler, Numerical solution of systems of polynomials arising in engineering and science, (2005), World Scientific Press. T.Y. Li, Numerical solution of polynomial systems by homotopy continuation methods, in Handbook of Numerical Analysis, Volume XI, , North-Holland, 2003.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Case Study: Alt’s Problem We follow

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, A four-bar planar linkage is a planar quadrilateral with a rotational joint at each vertex. They are useful for converting one type of motion to another. They occur everywhere.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, How Do Mechanical Engineers Find Mechanisms? Pick a few points in the plane (called precision points) Find a coupler curve going through those points If unsuitable, start over.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Having more choices makes the process faster. By counting constants, there will be no coupler curves going through more than nine points.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Nine Point Path-Synthesis Problem H. Alt, Zeitschrift für angewandte Mathematik und Mechanik, 1923: Given nine points in the plane, find the set of all four-bar linkages, whose coupler curves pass through all these points.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, First major attack in 1963 by Freudenstein and Roth.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, D′D′ PjPj δjδj λjλj µjµj u b v C D x y P0P0 C′C′

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, PjPj δjδj µjµj b-δ j v C y P0P0 θjθj ye iθ j b v = y – b ve iμ j = ye iθ j - (b - δ j ) = ye iθ j + δ j - b C′C′

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, We use complex numbers (as is standard in this area) Summing over vectors we have 16 equations plus their 16 conjugates

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, This gives 8 sets of 4 equations: in the variables a, b, x, y, and for j from 1 to 8.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Multiplying each side by its complex conjugate and letting we get 8 sets of 3 equations in the 24 variables with j from 1 to 8.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16,

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, in the 24 variables with j from 1 to 8.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16,

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Using Cramer’s rule and substitution we have what is essentially the Freudenstein-Roth system consisting of 8 equations of degree 7. Impractical to solve: 7 8 = 5,764,801solutions.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Newton’s method doesn’t find many solutions: Freudenstein and Roth used a simple form of continuation combined with heuristics. Tsai and Lu using methods introduced by Li, Sauer, and Yorke found only a small fraction of the solutions. That method requires starting from scratch each time the problem is solved for different parameter values

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16,

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Solve by Continuation All 2-homog. systems All 9-point systems “numerical reduction” to test case (done 1 time) synthesis program (many times)

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16,

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Positive Dimensional Solution Sets We now turn to finding the positive dimensional solution sets of a system

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, How to represent positive dimensional components? S. + Wampler in ’95: Use the intersection of a component with generic linear space of complementary dimension. By using continuation and deforming the linear space, as many points as are desired can be chosen on a component.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Use a generic flag of affine linear spaces to get witness point supersets This approach has 19 th century roots in algebraic geometry

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, The Numerical Irreducible Decomposition Carried out in a sequence of articles with Jan Verschelde (Univiversity at Illinois at Chicago) and Charles Wampler (General Motors Research and Development) Efficient Computation of “Witness Supersets’’ S. and V., Journal of Complexity 16 (2000), Numerical Irreducible Decomposition S., V., and W., SIAM Journal on Numerical Analysis, 38 (2001),

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, An efficient algorithm using monodromy S., V., and W., SIAM Journal on Numerical Analysis 40 (2002), Intersections of algebraic sets S., V., and W., SIAM Journal on Numerical Analysis 42 (2004),

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Symbolic Approach with same classical roots Two articles in this direction: M. Giusti and J. Heintz, Symposia Mathematica XXXIV, pages Cambridge UP, G. Lecerf, Journal of Complexity 19 (2003),

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, The Irreducible Decomposition

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Witness Point Sets

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16,

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Basic Steps in the Algorithm

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Example

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16,

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, From Sommese, Verschelde, and Wampler, SIAM J. Num. Analysis, 38 (2001),

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Numerical issues posed by multiple components Consider a toy homotopy Continuation is a problem because the Jacobian with respect to the x variables is singular. How do we deal with this?

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Deflation The basic idea introduced by Ojika in 1983 is to differentiate the multiplicity away. Leykin, Verschelde, and Zhao gave an algorithm for an isolated point that they showed terminated. Given a system f, replace it with

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Bates, Hauenstein, Sommese, and Wampler: To make a viable algorithm for multiple components, it is necessary to make decisions on ranks of singular matrices. To do this reliably, endgames are needed.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Bertini and the need for adaptive precision Why use Multiprecision? to ensure that the region where an endgame works is not contained the region where the numerics break down;

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Bertini and the need for adaptive precision Why use Multiprecision? to ensure that the region where an endgame works is not contained the region where the numerics break down; to ensure that a polynomial is zero at a point is the same as the polynomial numerically being approximately zero at the point;

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Bertini and the need for adaptive precision Why use Multiprecision? to ensure that the region where an endgame works is not contained the region where the numerics break down; to ensure that a polynomial is zero at a point is the same as the polynomial numerically being approximately zero at the point; to prevent the linear algebra in continuation from falling apart.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Evaluation To 15 digits of accuracy one of the roots of this polynomial is a = Evaluating p(a) to 15 digits, we find that p(a) = -2. Even with 17 digit accuracy, the approximate root a is a = and we still only have p(a) =

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Wilkinson’s Theorem Numerical Linear Algebra Solving Ax = f, with A an N by N matrix, we must expect to lose digits of accuracy. Geometrically, is on the order of the inverse of the distance in from A to to the set defined by det(A) = 0.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, One approach is to simply run paths that fail over at a higher precision, e.g., this is an option in Jan Verschelde’s code, PHC.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, One approach is to simply run paths that fail over at a higher precision, e.g., this is an option in Jan Verschelde’s code, PHC. Bertini is designed to dynamically adjust the precision to achieve a solution with a prespecified error. Bertini is being developed by Daniel Bates, Jon Hauenstein, Charles Wampler, and myself (with some early work by Chris Monico).

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Issues You need to stay on the parameter space where your problem is: this means you must adjust the coefficients of your equations dynamically.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Issues You need to stay on the parameter space where your problem is: this means you must adjust the coefficients of your equations dynamically. You need rules to decide when to change precision and by how much to change it.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, The theory we use is presented in the article D. Bates, A.J. Sommese, and C.W. Wampler, Multiprecision path tracking, preprint. available at

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, A Motivating Problem and an Approach to It This is joint work with Charles Wampler. The problem is to find the families of overconstrained mechanisms of specified types.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16,

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, If the lengths of the six legs are fixed the platform robot is usually rigid. Husty and Karger made a study of exceptional lengths when the robot will move: one interesting case is when the top joints and the bottom joints are in a configuration of equilateral triangles.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16,

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Another Example

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Overconstrained Mechanisms

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, To automate the finding of such mechanisms, we need to solve the following problem: Given an algebraic map p between irreducible algebraic affine varieties X and Y, find the irreducible components of the algebraic subset of X consisting of points x with the dimension of the fiber of p at x greater than the generic fiber dimension of the map p.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, An approach A method to find the exceptional sets A.J. Sommese and C.W. Wampler, Exceptional sets and fiber products, preprint. An approach to large systems with few solutions A.J. Sommese, J. Verschelde and C.W. Wampler, Solving polynomial systems equation by equation, preprint.

Satellite Conference on Algebraic Geometry Segovia, Spain, August 16, Summary Many Problems in Engineering and Science are naturally phrased as problems about algebraic sets and maps. Numerical analysis (continuation) gives a method to manipulate algebraic sets and give practical answers. Increasing speedup of computers, e.g., the recent jump into multicore processors, continually expands the practical boundary into the purely theoretical region.