Annalisa Bonafede PhD student at IRA Radio Astronomy Institute Bologna (Italy) With: L. Feretti, G. Giovannini, M. Murgia, F. Govoni, G. B.Taylor, H. Ebeling,

Slides:



Advertisements
Similar presentations
October 27, 2006 Monique ARNAUD Atelier du PNC: Cosmologie avec SKA et LOFAR Amas de galaxies Emission non thermique comme traceur de la formation et de.
Advertisements

Methanol maser polarization in W3(OH) Lisa Harvey-Smith Collaborators: Vlemmings, Cohen, Soria-Ruiz Joint Institute for VLBI in Europe.
X-ray and optical detection of the radio bent jet in 3C 17 Radio Galaxies in the Chandra Era F. Massaro & D. E. Harris, M. Chiaberge, P. Grandi, F. D.
Evolution of a Powerful Radio Loud Quasar 3C186 and its Impact on the Cluster Environment at z=1 Aneta Siemiginowska Harvard-Smithsonian Center for Astrophysics.
Chandra's Clear View of the Structure of Clusters Craig Sarazin University of Virginia Bullet Cluster (Markevitch et al. 2004) Hydra A Cluster (Kirkpatrick.
Jets from Active Galactic Nuclei: Observations and Models
LOFAR & Particle acceleration in Galaxy Clusters Gianfranco Brunetti Institute of Radioastronomy –INAF, Bologna, ITALY.
The Radio/X-ray Interaction in Abell 2029 Tracy Clarke (Univ. of Virginia) Collaborators: Craig Sarazin (UVa), Elizabeth Blanton (UVa)
The GMRT Radio Halo survey Results and implications for LOFAR Simona Giacintucci Harvard-Smithsonian CfA, Cambridge, USA INAF-IRA, Bologna, Italy T. Venturi,
24-28 October 2005 Elena Belsole University of Bristol Distant clusters of Galaxies Ringberg Workshop X-ray constraints on cluster-scale emission around.
Luigina Feretti Istituto di Radioastronomia CNR Bologna, Italy Radio observations of cluster mergers X-Ray and Radio Connections, Santa Fe, NM February.
Radio halos and relics in galaxy clusters. NGC315: giant (~ 1.3 Mpc) radio galaxy with odd radio lobe (Mack 1996; Mack et al. 1998). precessing jets (Bridle.
Hamburg, 18 September 2008 LOFAR Wokshop1/44 Thermal and non-thermal emission from galaxy clusters: X-ray and LOFAR observations Chiara Ferrari Observatoire.
VLBI Imaging of a High Luminosity X-ray Hotspot Leith Godfrey Research School of Astronomy & Astrophysics Australian National University Geoff Bicknell,
Prospects and Problems of Using Galaxy Clusters for Precision Cosmology Jack Burns Center for Astrophysics and Space Astronomy University of Colorado,
Svetlana Jorstad Connection between X-ray and Polarized Radio Emission in the Large-Scale Jets of Quasars.
Jets in Low Power Compact Radio Galaxies Marcello Giroletti Department of Astronomy, University of Bologna INAF Institute of Radio Astronomy & G. Giovannini.
Particles and Fields in Lobes of Radio Galaxies Naoki Isobe (NASDA, MAXI Mission) Makoto Tashiro (Saitama Univ.) Kazuo Makishima (Univ. of Tokyo) Hidehiro.
Centaurus A Kraft, Hardcastle, Croston, Worrall, Birkinshaw, Nulsen, Forman, Murray, Goodger, Sivakoff,Evans, Sarazin, Harris, Gilfanov, Jones X-ray composite.
T.G.Arshakian MPI für Radioastronomie (Bonn) Exploring the weak magnetic fields with LOFAR.
3C 186 A Luminous Quasar in the Center of a Strong Cooling Core Cluster at z>1 Aneta Siemiginowska CfA Tom Aldcroft (CfA) Steve Allen (Stanford) Jill Bechtold.
Extended Radio Sources in Clusters of Galaxies Elizabeth Blanton University of Virginia.
Low frequency radio observations of galaxy groups With acknowledgements to: R. Athreya, P. Mazzotta, T. Clarke, W. Forman, C. Jones, T. Ponman S.Giacintucci.
Cosmological MHD Hui Li Collaborators: S. Li, M. Nakamura, S. Diehl, B. Oshea, P. Kronberg, S. Colgate (LANL) H. Xu, M. Norman (UCSD), R. Cen (Princeton)
PRESIDENCY UNIVERSITY
Chandra Observations of Radio Sources in Clusters: Impact on the ICM and Tracers of High-z Systems Elizabeth Blanton University of Virginia Collaborators:
Bubble heating in groups and clusters: the nature of ghost cavities Nazirah Jetha 1, Martin Hardcastle 2, Simon Weston 2, Arif Babul 3, Ewan O’Sullivan.
Radio lobes of Pictor A: an X-ray spatially resolved study G.Migliori(1,2,3), P.Grandi(2), G.C.G.Palumbo(1), G.Brunetti(4), C.Stanghellini(4) (1) Bologna.
Subgrid models of active galactic nuclei in clusters of galaxies Paul Matthew Sutter Paul M. Ricker Univ. of Illinois at Urbana-Champaign Frontiers in.
Cosmic magnetism ( KSP of the SKA) understand the origin and evolution of magnetism in the Galaxy, extragalactic objects, clusters and inter-galactic/-cluster.
Wide Field Imagers in Space and the Cluster Forbidden Zone Megan Donahue Space Telescope Science Institute Acknowledgements to: Greg Aldering (LBL) and.
The luminous X-ray hotspot in 4C 74.26: jet dynamics at work Mary Erlund Institute of Astronomy, Cambridge, UK A.C. Fabian, K.M. Blundell, C. Moss and.
Summary(3) -- Dynamics in the universe -- T. Ohashi (Tokyo Metropolitan U) 1.Instrumentation for dynamics 2.Cluster hard X-rays 3.X-ray cavities 4.Dark.
Hot gas in galaxy pairs Olga Melnyk. It is known that the dark matter is concentrated in individual haloes of galaxies and is located in the volume of.
Low Power Compact radio galaxies at high angular resolution Marcello Giroletti INAF Istituto di Radioastronomia & G. Giovannini (UniBO, IRA) G. B. Taylor.
“Surveying the low frequency sky with LOFAR” 8-12 March 2010, Leiden, The Netherlands INAF-Istituto di Radioastronomia, Bologna, ITALY Cluster Radio Halos.
Quasar large scale jets: Fast and powerful or weak and slow, but efficient accelerators? Markos Georganopoulos 1,2 1 University of Maryland, Baltimore.
First Result of Urumqi 6cm Polarization Observations: Xiaohui Sun, Wolfgang Reich JinLin Han, Patricia Reich, Richard Wielebinski Partner Group of MPIfR.
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
2005/9/28 X-ray Universe The electron and magnetic field energies in the east lobe of the radio galaxy Fornax A, measured with XMM-Newton. Naoki.
GH2005 Gas Dynamics in Clusters II Craig Sarazin Dept. of Astronomy University of Virginia A85 Chandra (X-ray) Cluster Merger Simulation.
Chandra Observation of the Failed Cluster Candidate K. Hayashida, H. Katayama (Osaka University), K. Mori (Penn State University), T.T. Takeuchi.
Investigation of different types radio sources by IPS method at 111MHz S.A.Tyul’bashev Pushchino Radio Astronomy Observatory, Astro Space Center of P.N.Lebedev.
Cosmic magnetism ( KSP of the SKA)‏ understand the origin and evolution of magnetism in the Galaxy, extragalactic objects, clusters and inter-galactic/-cluster.
The Quasar : A Laboratory for Particle Acceleration Svetlana Jorstad IAR, Boston U Alan Marscher IAR, Boston U Jonathan Gelbord U. Durham Herman.
Gas in Galaxy Clusters Tracy Clarke (NRAO) June 5, 2002 Albuquerque, AAS.
“Astrophysics with E-LOFAR’’ September 2008, Hamburg, Germany Istituto di Radioastronomia, INAF- Bologna, ITALY Cluster Radio Halos in the LOFAR.
Deep Chandra observation of WARPJ at z=1: an evolved cool-core cluster at high-z (and a bonus…) P. Tozzi, M.Nonino (INAF-TS), P. Rosati (ESO),
Energy Balance in Clusters of Galaxies Patrick M. Motl & Jack O. Burns Center for Astrophysics and Space Astronomy University of Colorado at Boulder X-ray.
Astrophysics from the Moon in the Radio Band Gianfranco Brunetti INAF - IRA, Bologna.
RGS observations of cool gas in cluster cores Jeremy Sanders Institute of Astronomy University of Cambridge A.C. Fabian, J. Peterson, S.W. Allen, R.G.
On the nature of High Frequency Peaker radio sources Monica Orienti Girdwood, 22/05/2007 Monica Orienti – Extragalactic Jets (INAF – IRA, Bologna) Daniele.
Jet Interactions with the Hot Atmospheres of Clusters & Galaxies B.R. McNamara University of Waterloo Girdwood, Alaska May 23, 2007 L. Birzan, P.E.J. Nulsen,
Abstract We present multiwavelength imaging and broad-band spectroscopy of the relativistic jets in the two nearby radio galaxies 3C 371 and PKS ,
NuSTAR, ITS BACKGROUND AND CLUSTERS OF GALAXIES FABIO GASTALDELLO INAF, IASF-Milano And The Galaxy Clusters NuSTAR Team.
TWO SAMPLES OF X-RAY GROUPS FABIO GASTALDELLO UC IRVINE & BOLOGNA D. BUOTE P. HUMPHREY L. ZAPPACOSTA J. BULLOCK W. MATHEWS UCSC F. BRIGHENTI BOLOGNA.
Brigthest Cluster Galaxies Unique class of objects  most luminous  most massive  extended source  some BCG shows multiple nuclei → galaxy merger →
Collaborators: Murgia M. (IRA-INAF-CA), Feretti L. (IRA-INAF- BO), Govoni F. (OAC-INAF-CA), Giovannini G. (University of Bologna), Ferrari C. (Observatoire.
The interplay of GeV electrons & magnetic fields: The interplay of GeV electrons & magnetic fields: interesting aspects in galaxies, radio galaxies and.
Challenging the merger/sloshing cold front paradigm: A2142 revisited by XMM Mariachiara Rossetti (Università degli Studi di Milano & IASF Milano) D. Eckert,
Paola Rebusco (MIT ) Galaxy Clusters in the Swift/BAT era by Paola Rebusco Marco Ajello (SLAC), Nico Cappelluti (MPE), Olaf Reimer (Stanford), Hans Boehringer.
Physical properties of young radio sources and their ambient medium Monica Orienti Dipartimento di Astronomia, UniBo; INAF – IRA, Bologna Monica Orienti.
Observations of Magnetic Fields in Regular and Irregular Clusters
Eyes on the Polarized Sky, Feet on the Ground
Polarization of Cluster Radio Sources with LOFAR
Using AGN as Probes of the ICM
Lijo Thomas George, K. S. Dwarakanath
T.G.Arshakian MPI für Radioastronomie (Bonn)
Cornelia C. Lang University of Iowa collaborators:
Presentation transcript:

Annalisa Bonafede PhD student at IRA Radio Astronomy Institute Bologna (Italy) With: L. Feretti, G. Giovannini, M. Murgia, F. Govoni, G. B.Taylor, H. Ebeling, S. Allen, G. Gentile, Y. Philstrom Ascona, 1/06/2009 Cosmological magnetic field

O U T LI N E O U T LI N E Magnetic Field in Galaxy Clusters The interesting case of MACS J Radio observations: discovery of the most distant radio halo Polarization properties Constrain on the magnetic field strength and structure from polarization and under equipartition assumption conclusions

Galaxy Clusters: Intra Cluster Medium : Non thermal component  magnetic field +relativistic particles Radio Diffuse EmissionPolarization properties of radio sources Abell 2163 Feretti et al. (2001), Govoni et al. (2004) Feretti et al. (2001), Govoni et al. (2004) Abell 1240 Bonafede et al (2009) Bonafede et al (2009)

Optical emission: Ma et al (2008) Edge et al (2003) “A prime example of a complex major cluster merger ” (Ma ) Z=0.551 arsec  kpc 07h17m25s30s35s 40s 37°43’30” 44’23” 45’00” 46’00” 30” HST F814w filter X-ray emission : Ma et al (2008) Chandra 60 ksec ACIS-I L =2.74± erg/s [0.1 – 2.4]keV =11 kev T going from 5 to 20 keV

Joint Optical – X-ray analysis 4 distinct sub-clusters ongoing triple merger + 6 Mpc long filament, source of continuous and discrete accretion of matter by the cluster Z=0.551 arsec  kpc What happens to the non- thermal component of the ICM? Edge et al. 2003

VLA – B-array obs 4 freq in the 20 cm band tos ~ 2h per freq. C-array obs 2 freq in the 6 cm band tos ~ 2h per freq Radio observations: In full polarization mode + VLA Archive obs at 8.5 GHz C array obs at 4.8 GHz D-array θ~ 5’’ x 5” θ~ 2’’ x 2” VLA – C-array obs 1.4 GHz, tos~ 2h θ~ 18’’ x15”

Observing the compact features A B C Filamentary structure θ~ 5’’ x 5” θ~ 2’’ x 2” Chandra + VLA 1.4 GHZ HST + VLA 8.5 GHZ 260 kpc

Discovery of the most distant & most powerful radio halo P 1.4 GHz ~ W/Hz ; also emitting at 4.9 GHz 1.5 Mpc Observing the extended emission θ~ 18’’ x20” Chandra [0.5-7keV] + VLA 1.4 GHZ 1.5 Mpc

Polarized emission from the radio halo 2nd case after Abell 2255 (Govoni e al. 2005) 1.4 GHZ 5% mean Pol Max ~ 24% Min ~ 0.6% θ~ 18’’ x20” Upper limits 4% con beam 45% quidi non è ‘’strano’’

1.4 GHZ4.9 GHZ What are we seeing at high resolution? 8% mean Pol17% mean Pol 9% pol flux 16% pol flux 20% pol flux 0.4 % pol flux

d H E E λ  RM Faraday rotation: IF the cluster acts like an external screen:

But... Faraday rotation internal to the emiting source Strong beam depolarization RM...we can verify the fit of Ψ versus λ 2 Foreground structure RM due to our galaxy λ 2 law Background structure RM due to the cluster λ 2 law Within the cluster icm structure Internal rotation NO λ 2 law

RM fit with PACERMAN algorithm (Polarization Angle CorrRecting Rotation Measure ANalisys ) Dolag et al. (2005) Filamentary part of the radio halo

% Polarization: -Increases with increasing n -Decreases toward the cluster center Numerical Simulations by murgia et al Vectorial form n ≥3 Λ max 100s kpc The magnetic field power spectrum

if E min is constat with r Using the deprojected brightness profile Factor 2.5 Under the equipartition assumption: L computed in a fixed energy range:E min E max Beta-model from x-ray analysis (Ma et al. 2008)

Under the equipartition assumption: L computed in a fixed energy range:E min E max E min =100 and E max >> E min

Conclusions Discovery of a giant radio halo emitting from 74 MHZ – 4.9 GHz z=0.55  the most distant one P 1.4 GHz ~ W/Hz  the most powerful one Polarized emission from the radio halo 0.6 % – 24% second case after A2255 (Govoni et al. 2005)  Magnetic field power spectrum n> 3, Λ max ≥ 100s kpc B eq ~ 1.2 µG, B 0 ~3 µG, B decreases as the gas density Under equipartition assumption Bonafede et al, arXiv: arXiv: