EE2003 Circuit Theory Chapter 2 Basic Laws

Slides:



Advertisements
Similar presentations
Chapter 2 Basic laws SJTU.
Advertisements

Unit 8 Combination Circuits
2. RESISTIVE CIRCUITS CIRCUITS by Ulaby & Maharbiz Piezoresistive sensor All rights reserved. Do not reproduce or distribute. ©2013 Technology and Science.
Basic Laws. Ohm Law Materials in general have a characteristic behavior of resisting the flow of electric charge. This physical property, or ability.
Chapter 2 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Series Circuits ENTC 210: Circuit Analysis I Rohit Singhal Lecturer Texas A&M University.
Discussion D2.1 Chapter 2 Sections 2-1 – 2-6, 2-10
Chapter 3 Methods of Analysis
BASIC LAWS Ohm’s Law Kirchhoff’s Law Series resistors & voltage division Parallel resistors & current division Y -  transformation.
1 Exam 1 Review Chapters 1, 2, 9. 2 Charge, q Recall Coulomb’s Law Unit: Newton meter 2 / coulomb 2 volt meter / coulomb Charge on an electron (proton)
ECE 2006 Lecture for Chapters 1 & 2 S.Norr. Fundamental Laws of Circuits Ohm’s Law: –The voltage across a resistor is directly proportional to the current.
BASIC LAWS Ohm’s Law Kirchhoff’s Law Series resistors & voltage division Parallel resistors & current division Source Transformation Y -  transformation.
Lecture - 2 Basic circuit laws
Lecture 5 Review: Circuit reduction Related educational modules:
Lecture 2 Basic Circuit Laws
Lecture 2: Resistive Circuits Nilsson 2.5, , 3.7 ENG17 : Circuits I Spring April 2, 2015.
Voltage Dividers and Current Dividers
Objective of Lecture Explain mathematically how resistors in series are combined and their equivalent resistance. Chapter 2.5 Explain mathematically how.
Kirchhoff’s Laws Laws of Conservation.
EENG 2610: Circuits Analysis Class 2: Kirchhoff’s Laws, Single-Loop Circuits, Single- Node Pair Circuits Oluwayomi Adamo Department of Electrical Engineering.
Lecture 2: Circuit Elements & Schematics Nilsson ENG17 (Sec. 2): Circuits I Spring April 3, 2014.
Ohm’s law and Kirchhoff's laws
Basic Electrical Circuits & Machines (EE-107) Course Teacher Shaheena Noor Assistant Professor Computer Engineering Department Sir Syed University of Engineering.
1 Exam 1 Review Chapters 1, 2, 9. 2 Charge, q Recall Coulomb’s Law Unit: Newton meter 2 / coulomb 2 volt meter / coulomb Charge on an electron (proton)
Chapter 2 Circuit element
305221, Computer Electrical Circuit Analysis การวิเคราะห์วงจรไฟฟ้าทาง คอมพิวเตอร์ 3(2-3-6) ณรงค์ชัย มุ่งแฝงกลาง คมกริช มาเที่ยง สัปดาห์ที่ 3 Nodal.
Applied Circuit Analysis Chapter 4 - Series Circuits Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Series Circuits EE 2010: Fundamentals of Electric Circuits Mujahed AlDhaifallah.
1 AGBell – EECT by Andrew G. Bell (260) Lecture 5.
Circuit Elements and Variables
Chapter 19 DC Circuits. Objective of the Lecture Explain Kirchhoff’s Current and Voltage Laws. Demonstrate how these laws can be used to find currents.
SERIES RESISTORS AND VOLTAGE DIVISION In Fig the two resistors are in series, since the same current i flows in both of them. Applying Ohm’s law.
Circuits and Electronics Midway in Chapter 2 Resistor Combinations.
Lecture 2: Circuit Elements and Series/Parallel Resistors Nilsson , ENG17 (Sec. 1): Circuits I Summer June 24, 2014.
Lec # 05.
Circuit Theory Tashfeen Khan. Introduction This chapter mainly deals with laws that are used to find currents, voltages and resistances in a circuit.
Circuit Theory Chapter 2 Basic Laws
1 Chapter 3 Resistive Circuits. 2 Figure The circuit being designed provides an adjustable voltage, v, to the load circuit. Figure (a) A proposed.
Series and Parallel Elements
Engineering Fundamentals and Problem Solving, 6e Chapter 17 Electrical Circuits.
Ohm’s Law Resistance in Series Circuits
FUNDAMENTALS OF ELECTRICAL ENGINEERING [ ENT 163 ]
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, ©2008 Pearson Education, Inc. Lecture 3 Circuit Laws, Voltage.
Ohm’s Law. Ohm’s Law states that the voltage v across a resistor is directly proportional to the current flowing through it.
Series Circuits Topics Covered in Chapter 4 4-1: Why I Is the Same in All Parts of a Series Circuit 4-2: Total R Equals the Sum of All Series Resistances.
Week 5 Day 1. Units to be measured and calculated VoltageVoltsV or E ResistanceOhmsR or Ω Current AmpsI or A PowerWattW or P.
1 Fundamentals of Electric Circuits Chapter 2 Basic Laws Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Chapter2 Basic Laws 2.0 Objectives For This Chapter 2.1 Introduction. 2.2 Nodes, Branches, and Loops. 2.3 Kirchhoff’s Laws. 2.4 Equivalent Subcircuits.
Chapter 2 Resistive Circuits 1. Overview of Chapter Series Resistors and Parallel Resistors 2.2Voltage Divider Circuit 2.3 Current Divider Circuit.
EKT101 Electric Circuit Theory
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits Chapter 2
Basic Laws of Electric Cicuits
Fundamentals of Electric Circuits Chapter 2
Supplement to Circuits Analysis
BASIC LAWS Ohm’s Law Kirchhoff’s Law
1 Kirchhoff’s Law. KIRCHHOFF’S LAWS Ohm’s law by itself is insufficient to analyze circuits. However, when combined with Kirchhoff’s two laws, we have.
EKT101 Electric Circuit Theory
Kirchhoff’s Laws Laws of Conservation.
Chapter 2. Resistive circuits
Exam 1 Review Chapters 1, 2, 9.
Fundamentals of Electric Circuits
Voltage and Current Laws
Alexander-Sadiku Fundamentals of Electric Circuits
Circuit Principles Kirchhoff’s Current Law (KCL)
Nodes, Branches, and Loops
Fundamentals of Electric Circuits Chapter 2
Learning objectives Series Resistances Parallel Resistances
Chapter 2 Resistive circuit SAFIZAN BINTI SHAARI PPK MIKROELEKTRONIK.
Circuit Principles Kirchhoff’s Current Law (KCL)
Presentation transcript:

EE2003 Circuit Theory Chapter 2 Basic Laws Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Basic Laws - Chapter 2 2.1 Ohm’s Law. 2.2 Nodes, Branches, and Loops. 2.3 Kirchhoff’s Laws. 2.4 Series Resistors and Voltage Division. 2.5 Parallel Resistors and Current Division. 2.6 Wye-Delta Transformations.

2.1 Ohms Law (1) Ohm’s law states that the voltage across a resistor is directly proportional to the current I flowing through the resistor. Mathematical expression for Ohm’s Law is as follows: Two extreme possible values of R: 0 (zero) and  (infinite) are related with two basic circuit concepts: short circuit and open circuit.

2.1 Ohms Law (2) Conductance is the ability of an element to conduct electric current; it is the reciprocal of resistance R and is measured in mhos or siemens. The power dissipated by a resistor:

2.2 Nodes, Branches and Loops (1) A branch represents a single element such as a voltage source or a resistor. A node is the point of connection between two or more branches. A loop is any closed path in a circuit. A network with b branches, n nodes, and l independent loops will satisfy the fundamental theorem of network topology:

2.2 Nodes, Branches and Loops (2) Example 1 Original circuit Equivalent circuit How many branches, nodes and loops are there?

2.2 Nodes, Branches and Loops (3) Example 2 Should we consider it as one branch or two branches? How many branches, nodes and loops are there?

2.3 Kirchhoff’s Laws (1) Kirchhoff’s current law (KCL) states that the algebraic sum of currents entering a node (or a closed boundary) is zero. Mathematically,

2.3 Kirchhoff’s Laws (2) Example 4 Determine the current I for the circuit shown in the figure below. I + 4-(-3)-2 = 0 I = -5A This indicates that the actual current for I is flowing in the opposite direction. We can consider the whole enclosed area as one “node”.

2.3 Kirchhoff’s Laws (3) Kirchhoff’s voltage law (KVL) states that the algebraic sum of all voltages around a closed path (or loop) is zero. Mathematically,

2.3 Kirchhoff’s Laws (4) Example 5 Applying the KVL equation for the circuit of the figure below. va-v1-vb-v2-v3 = 0 V1 = IR1 v2 = IR2 v3 = IR3 va-vb = I(R1 + R2 + R3)

2.4 Series Resistors and Voltage Division (1) Series: Two or more elements are in series if they are cascaded or connected sequentially and consequently carry the same current. The equivalent resistance of any number of resistors connected in a series is the sum of the individual resistances. The voltage divider can be expressed as

2.4 Series Resistors and Voltage Division (1) Example 3 10V and 5W are in series

2.5 Parallel Resistors and Current Division (1) Parallel: Two or more elements are in parallel if they are connected to the same two nodes and consequently have the same voltage across them. The equivalent resistance of a circuit with N resistors in parallel is: The total current i is shared by the resistors in inverse proportion to their resistances. The current divider can be expressed as:

2.5 Parallel Resistors and Current Division (1) Example 4 2W, 3W and 2A are in parallel

2.6 Wye-Delta Transformations Delta -> Star Star -> Delta