Assimilation of Aerosol Optical Depth Gé Verver 1, Bas Henzing 1, Peter van Velthoven 1 Cristina Robles-Gonzalez 2, Gerrit de Leeuw 2 1 KNMI, De Bilt,

Slides:



Advertisements
Similar presentations
Marc Schröder et al., FUB BBC2 Workshop, De Bilt, 10.´04 Problems related to absorption dependent retrievals and their validation Marc Schröder 1, Rene.
Advertisements

Ozone Assimilation in the Chemistry Transport Model CHIMERE using an Ensemble Kalman Filter (EnKF) : Preliminary tests over the Ile de France region 2.
N emissions and the changing landscape of air quality Rob Pinder US EPA Office of Research and Development Atmospheric Modeling & Analysis Division.
Gerrit de Leeuw 1,2,3, Larisa Sogacheva1, Pekka Kolmonen 1, Anu-Maija Sundström 2, Edith Rodriguez 1 1 FMI, Climate Change Unit, Helsinki, Finland 2 Univ.
GEOS-5 Simulations of Aerosol Index and Aerosol Absorption Optical Depth with Comparison to OMI retrievals. V. Buchard, A. da Silva, P. Colarco, R. Spurr.
Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009 Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009.
Quantitative retrievals of NO 2 from GOME Lara Gunn 1, Martyn Chipperfield 1, Richard Siddans 2 and Brian Kerridge 2 School of Earth and Environment Institute.
Proposed Aerosol Treatment for CAM4 Steve Ghan, Richard Easter, Xiaohong Liu, Rahul Zaveri Pacific Northwest National Laboratory precursor emissions coagulation.
Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009 Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009.
Quantitative Interpretation of Satellite and Surface Measurements of Aerosols over North America Aaron van Donkelaar M.Sc. Defense December, 2005.
Global Climatology of Fine Particulate Matter Concentrations Estimated from Remote-Sensed Aerosol Optical Depth Aaron van Donkelaar 1, Randall Martin 1,2,
Data assimilation of trace gases in a regional chemical transport model: the impact on model forecasts E. Emili 1, O. Pannekoucke 1,2, E. Jaumouillé 2,
GEOS-Chem simulation for AEROCOM Organic Aerosol Inter-comparison SIMULATED YEAR: 2006 Gabriele Curci – CETEMPS Nov
Air Quality-Climate Interactions Aijun Xiu Carolina Environmental Program.
Satellite-based Global Estimate of Ground-level Fine Particulate Matter Concentrations Aaron van Donkelaar1, Randall Martin1,2, Lok Lamsal1, Chulkyu Lee1.
TNO experience M. Schaap, R. Timmermans, H. Denier van der Gon, H. Eskes, D. Swart, P. Builtjes On the estimation of emissions from earth observation data.
AGU Fall MeetingDecember 4, 2005 Vijay Natraj (California Institute of Technology) Hartmut Bösch (Jet Propulsion Laboratory) Yuk Yung (California Institute.
Data assimilation of atmospheric CO 2 at ECMWF in the context of the GEMS project Richard Engelen ECMWF Thanks to Soumia Serrar and Frédéric Chevallier.
The Role of Aerosols in Climate Change Eleanor J. Highwood Department of Meteorology, With thanks to all the IPCC scientists, Keith Shine (Reading) and.
Next Gen AQ model Need AQ modeling at Global to Continental to Regional to Urban scales – Current systems using cascading nests is cumbersome – Duplicative.
CMAQ (Community Multiscale Air Quality) pollutant Concentration change horizontal advection vertical advection horizontal dispersion vertical diffusion.
1 1 Model studies of some atmospheric aerosols and comparisons with measurements K. G e o r g i e v I P P – B A S, S o f i a, B u l g a r i a.
Aerosol Working Group The 7 th International GEOS-Chem User’s Meeting May 4, 2015 Aerosol WG Co-Chairs Colette Heald: Jeff Pierce (outgoing):
Aerosol Microphysics: Plans for GEOS-CHEM
Clouds, Aerosols and Precipitation GRP Meeting August 2011 Susan C van den Heever Department of Atmospheric Science Colorado State University Fort Collins,
GEM-MACH Global The Canadian Global Air Quality Modeling/Forecasting System Dr. Sunling Gong Science and Technology Branch January 16-17, 2012.
Bas Mijling Ronald van der A AMFIC Final Meeting ● Beijing ● 23 October 2009 Results of WP 5 : Air Quality Forecasting.
1 Satellite data assimilation for air quality forecast 10/10/2006.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Tore Flatlandsmo Berglen EACE workshop June 2007 Air quality, ozone and aerosols in Asia. A model study Tore Flatlandsmo Berglen 1,2, Terje K. Berntsen.
AMFIC: Aerosol retrieval Gerrit de Leeuw, FMI/UHEL/TNO Pekka Kolmonen, FMI Anu-Maija Sundström, UHEL Larisa Sogacheva, UHEL Juha-Pekka Luntama, FMI Sini.
Using MODIS fire count data as an interim solution for estimating biomass burning emission of aerosols and trace gases Mian Chin, Tom Kucsera, Louis Giglio,
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008.
Operational assimilation of dust optical depth Bruce Ingleby, Yaswant Pradhan and Malcolm Brooks © Crown copyright 08/2013 Met Office and the Met Office.
Progress on Application of Modal Aerosol Dynamics to CAM Xiaohong Liu, Steve Ghan, Richard Easter, Rahul Zaveri, Yun Qian (Pacific Northwest National.
Aerosol Optical Depth during the Northern CA Fires of 2008 In situ aerosol light scattering and absorption measurements in Reno Nevada, 2008, indicated.
1 JRA-55 the Japanese 55-year reanalysis project - status and plan - Climate Prediction Division Japan Meteorological Agency.
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
Representation of Sea Salt Aerosol in CAM coupled with a Sectional Aerosol Microphysical Model CARMA Tianyi Fan, Owen Brian Toon LASP/ATOC, University.
Marc Schröder, FUB Tutorial, De Bilt, 10.´04 Photon path length distributions and detailed microphysical parameterisations Marc Schröder Institut für Weltraumwissenschaften,
Monitoring aerosols in China with AATSR Anu-Maija Sundström 2 Gerrit de Leeuw 1 Pekka Kolmonen 1, and Larisa Sogacheva 1 AMFIC , Barcelona 1:
Modelling the radiative impact of aerosols from biomass burning during SAFARI-2000 Gunnar Myhre 1,2 Terje K. Berntsen 3,1 James M. Haywood 4 Jostein K.
CE 401 Climate Change Science and Engineering aerosols, carbon cycle 31 January 2012.
 26 January 2012 Dr. Herron-Thorpe will arrive at 10:00 to have you do the greenhouse gas survey.
TEMIS user workshop, Frascati, 8-9 October 2007 TEMIS – VITO activities Felix Deutsch Koen De Ridder Jean Vankerkom VITO – Flemish Institute for Technological.
Aerosol Size-Dependent Impaction Scavenging in Warm, Mixed, and Ice Clouds in the ECHAM5-HAM GCM Betty Croft, and Randall V. Martin – Dalhousie University,
AT737 Aerosols.
10-11 October 2006HYMN kick-off TM3/4/5 Modeling at KNMI HYMN Hydrogen, Methane and Nitrous oxide: Trend variability, budgets and interactions with the.
ESTIMATION OF SOLAR RADIATIVE IMPACT DUE TO BIOMASS BURNING OVER THE AFRICAN CONTINENT Y. Govaerts (1), G. Myhre (2), J. M. Haywood (3), T. K. Berntsen.
WP 5 : Air Quality Forecasting Bas Mijling Ronald van der A Arjan Lampe AMFIC Progress Meeting ● Barcelona ● 24 June 2009.
ICDC7, Boulder September 2005 Estimation of atmospheric CO 2 from AIRS infrared satellite radiances in the ECMWF data assimilation system Richard.
MODIS Science Team Mtg Simultaneous retrieval of Aerosol and Chlorophyll from MODIS Aqua radiances Clark Weaver GEST UMBC NASA Goddard Arlindo da Silva.
Estimating PM 2.5 from MODIS and MISR AOD Aaron van Donkelaar and Randall Martin March 2009.
Radiative forcing due to BC on snow and the direct aerosol effect of BC in the Arctic Gunnar Myhre CICERO – Center for International Climate and Environmental.
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
GEOS-CHEM Activities at NIA Hongyu Liu National Institute of Aerospace (NIA) at NASA LaRC June 2, 2003.
Chemical Data Assimilation: Aerosols - Data Sources, availability and needs Raymond Hoff Physics Department/JCET UMBC.
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
Convective Transport of Carbon Monoxide: An intercomparison of remote sensing observations and cloud-modeling simulations 1. Introduction The pollution.
ESA :DRAGON/ EU :AMFIC Air quality Monitoring and Forecasting In China Ronald van der A, KNMI Bas Mijling, KNMI Hennie Kelder KNMI, TUE DRAGON /AMFIC project.
Troposphere Strastosphere D. H. Gas phase chemistry Scavenging processes Fossil fuel Emissions Biomass burning emissions Biogenic emissions Boundary layer.
Modal Aerosol Treatment in CAM: Evaluation and Indirect Effect X. Liu, S. J. Ghan, R. Easter (PNNL) J.-F. Lamarque, P. Hess, N. Mahowald, F. Vitt, H. Morrison,
Retrieving sources of fine aerosols from MODIS/AERONET observations by inverting GOCART model INVERSION: Oleg Dubovik 1 Tatyana Lapyonok 1 Tatyana Lapyonok.
Mayurakshi Dutta Department of Atmospheric Sciences March 20, 2003
Use of Near-Real-Time Data for the Global System
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Modelling the radiative impact of aerosols from biomass burning during SAFARI-2000   Gunnar Myhre, Terje K. Berntsen, James M. Haywood, Jostein K. Sundet,
Using dynamic aerosol optical properties from a chemical transport model (CTM) to retrieve aerosol optical depths from MODIS reflectances over land Fall.
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Global Climatology of Fine Particulate Matter Concentrations Estimated from Remote-Sensed Aerosol Optical Depth Aaron van Donkelaar1, Randall Martin1,2,
Presentation transcript:

Assimilation of Aerosol Optical Depth Gé Verver 1, Bas Henzing 1, Peter van Velthoven 1 Cristina Robles-Gonzalez 2, Gerrit de Leeuw 2 1 KNMI, De Bilt, The Netherlands 2 TNO-FEL, The Hague, The Netherlands Retrieval Modeling Assimilation Results Outlook

The Assimilation System

Retrieval Surface Observations Of aerosol Optical Properties Radiative Transfer Model Lookup Tables Satellite observed radiances at different wavelengths Finding the ‘Optimal’ Combination of Lookup Tables Aerosol Optical Depth (AOD, 

Results of AOD retrieval at 659 nm, averaged over February Retrieval

The TM3 model Resolution: 2.5  x 2.5  (fine) or 10  x 7.5  (coarse); 31 layers Chemistry: Background tropospheric chemistry ~100 reactions (gas- and aqueous phase) 26 transported tracers Aerosols: Sulfate and Nitrate Black Carbon (hydrophilic/hydrophobic) Organic Carbon (hydrophilic/hydrophobic) (Dust, Seasalt) Extinction Coefficients: prescribed (for all Carbon species : 9 m 2 /kg, for Sulphate: f(RH)) Transport: ECMWF 6-hourly analysed meteorology Incl. Cloud transport, Turbulent exchange Sources of aerosols: Carbon emission (Cooke, 1999) chemical formation of Sulfate and Nitrate Sinks of aerosols: Dry deposition (Ganzevelt et al., 1998) Wet deposition (Jeuken et al. 2001, Roelofs and Lelieveld, 1995)

The Assimilation Procedure Aerosol Optical Depth OI scheme provides: Aerosol mass for each species adjusted following: (Collins et al., 2002) based onand

Results for the INDOEX region Without assimilation24 hour forecast ATSR-2 ObservationAnalysis

Results for the INDOEX region

Conclusion There is a strong impact of the observations on the aerosol distributions The lifetime of the aerosols is long enough to carry the observational information for several days

Outlook In the near future major improvements are expected by: 1.Using modeled a priori aerosol profiles in the retrieval 2.Refining and updating source strengths and distributions 3.Better estimations of forecast and observation errors used in the assimilation scheme