IGPP, March 3 2005 Coronal shock waves observed in images H.S. Hudson SSL/UCB.

Slides:



Advertisements
Similar presentations
MHD modeling of coronal disturbances related to CME lift-off J. Pomoell 1, R. Vainio 1, S. Pohjolainen 2 1 Department of Physics, University of Helsinki.
Advertisements

Interaction of coronal mass ejections with large-scale structures N. Gopalswamy, S. Yashiro, H. Xie, S. Akiyama, and P. Mäkelä IHY – ISWI Regional meeting.
The Sun’s Dynamic Atmosphere Lecture 15. Guiding Questions 1.What is the temperature and density structure of the Sun’s atmosphere? Does the atmosphere.
A full view of EIT waves Chen, P.F., Fang, C. & Shibata, K. ApJ, 2005, 622, Solar seminar Shiota.
Electron Acceleration at the Solar Flare Reconnection Outflow Shocks Gottfried Mann, Henry Aurass, and Alexander Warmuth Astrophysikalisches Institut Potsdam,
Hard X-rays associated with CMEs H.S. Hudson, UCB & SPRC Y10, Jan. 24, 2001.
Coronal Loop Oscillations and Flare Shock Waves H. S. Hudson (UCB/SSL) & A. Warmuth (Astrophysical Institute Potsdam) Coronal loop oscillations: introduction.
Flare footpoints and ribbons: The impulsive phase H.S. Hudson Space Sciences Lab, UC Berkeley.
Flares and global waves, including seismic H. S. Hudson 1, C. A. Lindsey 2, J. Martinez-Oliveros 1 1 Space Sciences Laboratory, University of California,
Flare waves and the impulsive phase H. S. Hudson Space Sciences Laboratory University of California, Berkeley.
The mystery of the MISSING MOMENTUM H. S. Hudson Space Sciences Laboratory, University of California, Berkeley, USA Astronomy & Astrophysics Group, Glasgow.
Flare global waves of three kinds H. S. Hudson 1, C. A. Lindsey 2, J. Martinez-Oliveros 1 1 Space Sciences Laboratory, University of California, Berkeley,
E. Robbrecht – SIDC- Royal Observatory of Belgium 8 March 2007 The statistical importance of narrow CMEs Open questions to be addressed by SECCHI Eva Robbrecht,
Flare waves and the impulsive phase H. S. Hudson Space Sciences Laboratory University of California, Berkeley.
Relationships between flares and CMEs H.S. Hudson Space Sciences Lab, UC Berkeley.
Hard X-ray sources in the solar corona H.S. Hudson Space Sciences Lab, UC Berkeley.
Soft X-ray observations of global waves Khan-Aurass 2002 Narukage et al Hudson et al
Transients in RHESSI and Chromospheric flares H. Hudson Space Sciences Lab, UC Berkeley.
PTA, September 21, 2005 Solar flares in the new millennium H.S. Hudson Space Sciences Lab, UC Berkeley.
MRT workshop, August 10, 2004 Active-region magnetic structures and their perturbations by flares H.S. Hudson SSL/UCB.
Coronal IP Shocks Nat Gopalswamy NASA/GSFC Elmau CME Workshop, 2003 February 7 Plenary talk Sun Earth.
CAWSES December 10, CMEs H.S. Hudson Space Sciences Lab, UC Berkeley.
Coronal hard X-rays prior to RHESSI H. S. Hudson Space Sciences Lab, UC Berkeley.
CME-driven Shocks in White Light Observations SOHO/LASCO C3 – CME May 5 th, 1999 CME-driven Shock We demonstrate that CME-driven shocks: (1) can be detected.
“Refinements to flare energy estimates…” Emslie et al., et Hugh too, JGR 110, 2005 Particles Flows Waves Corona B 2 /8  EM radiation Mechanical energy.
RHESSI OBSERVATIONS OF FLARE FOOTPOINTS AND RIBBONS H. Hudson and M. Fivian (SSL/UCB)
SEPs and Solar Radio Bursts S. Krucker and H. Hudson Time-of-flight analysis of SEP propagation Connectivity of the SEP field lines SIRA relevance.
Discussion Summary: Group B –Solar Active Regions And Their Production of Flares and Coronal Mass Ejections Discussion Leaders: George Fisher Hugh Hudson.
Reconstructing Active Region Thermodynamics Loraine Lundquist Joint MURI Meeting Dec. 5, 2002.
Palermo October 10, Flare observations in the recent solar maximum H.S. Hudson Space Sciences Lab, UC Berkeley.
The Yohkoh observations of solar flares Hugh Hudson UCB.
Stanford, January Solar flares, magnetars, and helioseismology H.S. Hudson SSL/UCB.
U.W., April 14, 2005 Solar flares in the new millennium H.S. Hudson SSL/UCB.
Glasgow, March 24, 2005 Large-scale coronal shock waves H.S. Hudson SSL/UCB.
Coronal Loop Oscillations and Flare Shock Waves H. S. Hudson (UCB/SSL) & A. Warmuth (Astrophysical Institute Potsdam) Coronal loop oscillations: (Fig.
U.W., April 14, 2005 Solar flares in the new millennium H.S. Hudson SSL/UCB.
Searching for Solar Shocks Including a brief history of X-ray astronomy H. Hudson, SPRC/UCSD/ISAS.
Coronal hard X-rays prior to RHESSI H. S. Hudson Space Sciences Lab, UC Berkeley.
Homology tutorial Hugh Hudson Solar MURI 21-Nov-03.
Coronal holes as seen in soft X-rays H. S. Hudson (UCB and SPRC) SOHO-11, Davos, March 13, 2002.
Elmau III, March 16, 2004 Coronal mass ejections A critical view of interpretations H.S. Hudson (UC Berkeley)
CAWSES December 10, CMEs H.S. Hudson Space Sciences Lab, UC Berkeley.
SMESE: a French/Chinese Solar “SMEX” H.S. Hudson Space Sciences Lab, UC Berkeley.
Overview of White Light & Radio Signatures of CMEs Angelos Vourlidas Naval Research Laboratory.
The Sun and the Heliosphere: some basic concepts…
1 THE RELATION BETWEEN CORONAL EIT WAVE AND MAGNETIC CONFIGURATION Speakers: Xin Chen
Outstanding Issues Gordon Holman & The SPD Summer School Faculty and Students.
SLIDE SHOW 3 B changes due to transport + diffusion III -- * * magnetic Reynold number INDUCTION EQUATION B moves with plasma / diffuses through it.
Observations of Moreton waves with Solar-B NARUKAGE Noriyuki Department of Astronomy, Kyoto Univ / Kwasan and Hida Observatories M2 The 4 th Solar-B Science.
Lessons Learnt from SOHO: CME Onsets CME Properties: to kg km/s Average span 45 o Significance: - Coronal evolution - Space weather.
Flare-associated shock waves observed in soft X-ray NARUKAGE Noriyuki Kwasan and Hida Observatories, Kyoto University – DC3 The 6 th Solar-B Science Meeting.
A comparison of CME-associated atmospheric waves observed in coronal (Fe XII 195A) and chromospheric ( He I 10830A) lines Holly R. Gilbert, Thomas E. Holzer,
Deconstructing EIT Waves Marco Velli Jet Propulsion Laboratory, Caltech and Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze Thompson.
The Space Weather Week Monique Pick LESIA, Observatoire de Paris November 2006.
Fast Magnetosonic Waves and Global Coronal Seismology in the Extended Solar Corona Ryun Young Kwon, Jie Zhang, Maxim Kramar, Tongjiang Wang, Leon Ofman,
A new mechanism for heating the solar corona Gaetano Zimbardo Universita’ della Calabria Rende, Italy SAIt, Pisa, 6 maggio 2009.
Measuring the Magnetic Field in the Solar Corona Steven R. Spangler… University of Iowa.
IMAGING AND SPECTOROPIC INVESTIGATIONS OF A SOLAR CORONAL WAVE: PROPERTIES OF THE WAVE FRONT AND ASSOCIATED ERUPTING MATERIAL L OUISE K. HARRA AND A LPHONSE.
ISSI, Beijing, China. The famous example of the decaying kink oscillations of coronal loops observed with the TRACE ISSI, Beijing,
Center for Astrophysics and Space Sciences, University of California, San Diego 9500 Gilman Drive #0424, La Jolla, CA , U.S.A
Shine 2004, A. Sterling CME Eruption Onset Observations: Dimmings Alphonse C. Sterling NASA/MSFC/NSSTC.
CME/Flare energetics and RHESSI observations H.S. Hudson SSL/UCB.
Coronal Seismology Based on EUV Waves P. F. Chen , China.
CME-driven Shocks in White Light Observations Verónica Ontiveros National University of Mexico, MEXICO George Mason University,USA Angelos Vourlidas Naval.
Solar Radio Imaging Array SIRA
Difficult to relate EIT waves to other phenomena due to cadence
Direct Observations of the Magnetic Reconnection Site of an Eruption on 2003 November ,ApJ, 622,1251 J. Lin, Y.-K. Ko, L. Sui, J. C. Raymond, G.
High-cadence Radio Observations of an EIT Wave
On the nature of EIT waves, EUV dimmings and their link to CMEs
Solar Eruption Onset: Where Does the Action Begin?
Presentation transcript:

IGPP, March Coronal shock waves observed in images H.S. Hudson SSL/UCB

IGPP, March Outline How coronal imaging should help with understanding shock waves Origins of large-scale coronal waves Mach numbers

IGPP, March Conclusions Large-scale coronal waves originate in compact magnetic structures The Mach numbers in the corona are low We can’t yet image the CME flow field in the corona (ie, below coronagraph occulting edges)

IGPP, March What coronal shocks should look like… Korreck et al., 2004

IGPP, March Chandra E

IGPP, March Imaging of coronal shocks: good news and bad news A shock wave should provide a sharp density gradient, easy to detect in images We can observe motions in two dimensions The medium is optically thin => confusion The wave may not be bright compared with other flare components The corona generally has low plasma beta, so the observed mass may not be structurally important

IGPP, March … Only imaging can properly characterize the large-scale structure The solar corona isn’t really accessible any other way

IGPP, March Imaging of coronal shocks Type II bursts (plasma radiation) Moreton waves (H  in the chromosphere) New modalities: EIT, X-rays 1, microwaves, meter waves, He Three events: Khan & Aurass (2002); Narukage et al. (2002); Hudson et al. (2003)

IGPP, March Type II burst

IGPP, March Moreton-Ramsey wave and EIT wave Thompson et al., 1998

IGPP, March G. A. Gary, Solar Phys. 203, 71 (2001) CH Mann et al., A&A 400, 329 (2003) Gopalswamy et al., JGR 106, (2001) (v A ~ 200  -1/2 km/s ?)

IGPP, March Direct X-ray observation Uchida 1968 Yohkoh 1998 EIT

IGPP, March Why X-ray waves are hard to observe directly

IGPP, March Field and energy are concentrated in active regions Active-region magnetic fields via Roumeliotis-Wheatland technique (McTiernan) Mass loading via empirical law (Lundquist/Fisher)

IGPP, March Lundquist et al., SPD 2004

IGPP, March NOAA 10486, Haleakala IVM data,  cube Roumeliotis-Wheatland-McTiernan method pixel size ~3000 km ScaledNot scaled

IGPP, March Heliospheric shocks in images? Maia et al., ApJ 528, L49 (2000) Vourlidas et al., ApJ 598, 1392 (2003) SOHO/UVCS

IGPP, March Vourlidas et al., ApJ 598, 1392 (2003) Where is the bow shock ?

IGPP, March Inferring the Mach number

IGPP, March X-ray signal S ~ n e 2 f(T) f(T) ~ T 2 d(ln(S))/d(ln(n)) ~ 2  Mach number estimate for 6 May 1998 event

IGPP, March Movie of dimming (Aug 28, 1992) Coronal Dimming

IGPP, March Dimming observed spectroscopically Harra & Sterling, ApJ 561, L216, 2001

IGPP, March UVCS shock observations Raouafi et al., A&A 434, 1039, 2004 Mancuso et al., A&A 383, 267, 2002 Raymond et al., GRL 27, 1439, 2000

IGPP, March Cartoon illustrating wave origins cf.

IGPP, March The CME-driven shock in the corona The CME involves outward plasma motions perpendicular to the field We see the result of these motions as dimmings, but the data are not good enough to follow the flows nor to see a bow wave There is an Alfven-speed “hole” in the middle corona in which Mach numbers could be larger

IGPP, March SUMMARY Coronal shock waves (metric type II) are blast waves (Uchida) launched by compact structures at flare onset. These propagate in an undisturbed corona The CME eruption restructures the corona and pushes a bow wave ahead of it into the solar wind. This creates a type II burst at long wavelengths

IGPP, March Conclusions Large-scale coronal waves originate in compact magnetic structures The Mach numbers in the corona are low We can’t yet image the CME flow field in the corona (ie, below coronagraph occulting edges)

IGPP, March END

IGPP, March Flare and CME energy partition