SUSY small angle electron tagging requirements Philip Bambade LAL-Orsay MDI workshop - SLAC 6-8 January 2005 With M. Berggren, F. Richard, Z. Zhang + DESY.

Slides:



Advertisements
Similar presentations
Measurement of Relic Density at the LHC1 Bhaskar Dutta Texas A&M University Bhaskar Dutta Texas A&M University Measurement of Relic Density at the LHC.
Advertisements

Fourth Generation Leptons Linda Carpenter UC Irvine Dec 2010.
Zhiqing Zhang (LAL, Orsay) 30/5-3/6/ SM Background Contributions Revisited for SUSY DM Stau Analyses Based on 1.P. Bambade, M. Berggren,
Relic Density at the LHC B. Dutta In Collaboration With: R. Arnowitt, A. Gurrola, T. Kamon, A. Krislock, D.Toback Phys.Lett.B639:46,2006, hep-ph/
P hysics background for luminosity calorimeter at ILC I. Božović-Jelisavčić 1, V. Borka 1, W. Lohmann 2, H. Nowak 2 1 INN VINČA, Belgrade 2 DESY, Hamburg.
1 Rutherford Appleton Laboratory The 13th Annual International Conference on Supersymmetry and Unification of the Fundamental Interactions Durham, 2005.
SUSY studies at UCSC Bruce Schumm UC Santa Cruz Victoria Linear Collider Workshop July 28-31, 2004.
Pair backgrounds for different crossing angles Machine-Detector Interface at the ILC SLAC 6th January 2005 Karsten Büßer.
SLEPTON MASS RECONSTRUCTION AND DETECTOR RESOLUTION Bruce Schumm University of California at Santa Cruz ALCPG Workshop, Snowmass Colorado August 14-28,
June 8, 2007DSU 2007, Minnesota Relic Density at the LHC B. Dutta In Collaboration With: R. Arnowitt, A. Gurrola, T. Kamon, A. Krislock, D. Toback Phys.
CHARM 2007, Cornell University, Aug. 5-8, 20071Steven Blusk, Syracuse University D Leptonic Decays near Production Threshold Steven Blusk Syracuse University.
FORWARD SELECTRON PRODUCTION AND DETECTOR PERFORMANCE Bruce Schumm University of California at Santa Cruz SLAC LCWS05 Special Recognition: Troy Lau, UCSC.
Background Studies Takashi Maruyama SLAC ALCPG 2004 Winter Workshop January 8, 2004.
Paris 22/4 UED Albert De Roeck (CERN) 1 Identifying Universal Extra Dimensions at CLIC  Minimal UED model  CLIC experimentation  UED signals & Measurements.
Study of e + e  collisions with a hard initial state photon at BaBar Michel Davier (LAL-Orsay) for the BaBar collaboration TM.
EuroGDR, 13 th December 2003 Dan Tovey CERN, 18/03/2004 G. Bélanger 1 Uncertainties in the relic density calculations in mSUGRA B. Allanach, G. Bélanger,
IP crossing-angle and LC technology recommendation Philip Bambade LAL, Orsay 5 th ITRP meeting, Caltech, USA Session on detector & physics issues June.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
Crossed Channel Compton Scattering Michael Düren and George Serbanut, II. Phys. Institut, - some remarks on cross sections and background processes  
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Krakow2006.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Cambridge ILC software tools meeting.
ESFA/DESY LC Workshop 1 Klaus Mönig and Jadranka Sekaric Klaus Mönig and Jadranka Sekaric DESY - Zeuthen MEASUREMENT OF TGC IN e  COLLISIONS AT TESLA.
Model-independent WIMP searches at ILC with single photon Andrii Chaus (CEA/DESY), Jenny List (DESY), Maxim Titov (CEA) BSM Session, Belgrade, Serbia,
Precise Measurements of SM Higgs at the ILC Simulation and Analysis V.Saveliev, Obninsk State University, Russia /DESY, Hamburg ECFA Study Workshop, Valencia.
Jan MDI WS SLAC Electron Detection in the Very Forward Region V. Drugakov, W. Lohmann Motivation Talk given by Philip Detection of Electrons and.
Simulation of physics background for luminosity calorimeter M.Pandurović I. Božović-Jelisavčić “Vinča“ Institute of Nuclear Sciences, Belgrade, SCG.
Studying Very Light Gravitino at ILC Ryo Katayama (Tokyo) Collaborators: Shigeki Matsumoto (IPMU), T. Moroi (Tokyo), K. Fujii (KEK), T. Suehara (ICEPP),T.
1 A.Nomerotski SUSY Benchmarking Analyses with SiD Yiming Li, Tomas Lastovicka, Andrei Nomerotski (University of Oxford) TILC09, Tsukuba, 18 April 2009.
Trilinear Gauge Couplings at TESLA Photon Collider Ivanka Božović - Jelisavčić & Klaus Mönig DESY/Zeuthen.
Measurement of the branching ratios for Standard Model Higgs decays into muon pairs and into Z boson pairs at 1.4 TeV CLIC Gordana Milutinovic-Dumbelovic,
BES-III Workshop Oct.2001,Beijing The BESIII Luminosity Monitor High Energy Physics Group Dept. of Modern Physics,USTC P.O.Box 4 Hefei,
Report on LHT at the LHC ~ Some results from simulation study ~ Shigeki Matsumoto (Univ. of Toyama) 1.What kinds of LHT signals are expected, and how accurately.
Philip Bambade - LALLCWS04 - MDI 20/4/20041 Crossing-angle-or-not physics implications report from phone-meeting cold half-angle = 10, 4, 1, 0.3,……
P. Bambade, LAL/Orsay TESLA collaboration meeting APDG session 22/1/ Crossing-angle-or-not physics implications report from phone-meeting.
Electron Detection in the SiD BeamCal Jack Gill, Gleb Oleinik, Uriel Nauenberg, University of Colorado ALCPG Meeting ‘09 2 October 2009.
LHCb: Xmas 2010 Tara Shears, On behalf of the LHCb group.
Neutralino relic density in the CPVMSSM and the ILC G. Bélanger LAPTH G. B, O. Kittel, S. Kraml, H. Martyn, A. Pukhov, hep-ph/ , Phys.Rev.D Motivation.
SUSY08 Seoul 17 June 081 Daniel Teyssier RWTH Aachen University Searches for non-standard SUSY signatures in CMS on behalf of the CMS collaboration.
Progress on F  with the KLOE experiment (untagged) Federico Nguyen Università Roma TRE February 27 th 2006.
1 Calorimeters of the Very Forward Region Iftach Sadeh Tel Aviv University DESY Collaboration High precision design March 5 th 2008.
Two photon process veto efficiency 4-Aug-2006 A.Miyamoto Preliminary status report.
SEARCH FOR AN INVISIBLE HIGGS IN tth EVENTS T.L.Cheng, G.Kilvington, R.Goncalo Motivation The search for the Higgs boson is a window on physics beyond.
Detecting metastable staus and gravitinos at the ILC Hans-Ulrich Martyn RWTH Aachen & DESY.
The Luminosity Calorimeter Iftach Sadeh Tel Aviv University Desy ( On behalf of the FCAL collaboration ) June 11 th 2008.
On the possibility of stop mass determination in photon-photon and e + e - collisions at ILC A.Bartl (Univ. of Vienna) W.Majerotto HEPHY (Vienna) K.Moenig.
STAU CLIC Ilkay Turk Cakir Turkish Atomic Energy Authority with co-authors O. Cakir, J. Ellis, Z. Kirca with the contributions from A. De Roeck,
D. LeoneNovosibirsk, , 2006Pion Form KLOE Debora Leone (IEKP – Universität Karlsruhe) for the KLOE collaboration International Workshop.
26/07/2002C.Diaconu High Pt Multileptons at HERA 1 Cristinel Diaconu CPP Marseille On behalf of H1 and ZEUS collaboration Lepton pair production in ep.
DØ Beauty Physics in Run II Rick Jesik Imperial College BEACH 2002 V International Conference on Hyperons, Charm and Beauty Hadrons Vancouver, BC, June.
First results from SND at VEPP-2000 S. Serednyakov On behalf of SND group VIII International Workshop on e + e - Collisions from Phi to Psi, PHIPSI11,
Régis Lefèvre (LPC Clermont-Ferrand - France)ATLAS Physics Workshop - Lund - September 2001 In situ jet energy calibration General considerations The different.
September 2007SLAC IR WS Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY Talks by M. Morse, W. Wierba, myself.
LumiCal background and systematics at CLIC energy I. Smiljanić, Vinča Institute of Nuclear Sciences.
Stano Tokar, slide 1 Top into Dileptons Stano Tokar Comenius University, Bratislava With a kind permissison of the CDF top group Dec 2004 RTN Workshop.
1 LoI FCAL Takashi Maruyama SLAC SiD Workshop, SLAC, March 2-4, 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K. Krempetz T. MarkiewiczBNLW.
Search for Invisible Higgs Decays at the ILC Ayumi Yamamoto, Akimasa Ishikawa, Hitoshi Yamamoto (Tohoku University) Keisuke Fujii (KEK)
Compton Data Analysis Liping Gan University of North Carolina Wilmington.
A Search for Higgs Decaying to WW (*) at DØ presented by Amber Jenkins Imperial College London on behalf of the D  Collaboration Meeting of the Division.
Jieun Kim ( CMS Collaboration ) APCTP 2012 LHC Physics Workshop at Korea (Aug. 7-9, 2012) 1.
ATLAS Upgrade Program Sarah Demers, US ATLAS Fellow with BNL
The Optimized Sensor Segmentation for the Very Forward Calorimeter
Maria Person Gulda , Uriel Nauenberg, Gleb Oleinik,
Focus-Point studies at LHC
Report about “Forward Instrumentation” Issues
Searches at LHC for Physics Beyond the Standard Model
Study of e+e collisions with a hard initial state photon at BaBar
Marc Montull Supervisors: Jenny List, Mikael Berggren
Impact of Efficient e Veto on Stau SUSY Dark Matter Analyses at ILC
Search for Invisible Decay of Y(1S)
M. Ohlerich, A. Raspiareza, W. Lohmann DESY and MPI Munich
Presentation transcript:

SUSY small angle electron tagging requirements Philip Bambade LAL-Orsay MDI workshop - SLAC 6-8 January 2005 With M. Berggren, F. Richard, Z. Zhang + DESY colleagues

Philip BambadeSUSY small angle electron tagging requirements - SLAC 6-8/1/ Instrumentation in very forward region e.m. tagging down to ~ 5 mrad : - importance ? - feasibility ? ~ 3 GeV M. Büsser

Philip BambadeSUSY small angle electron tagging requirements - SLAC 6-8/1/ Dark Matter  SUSY  LHC + LC M. Battaglia et al. Eur.Phys.J.C33: ,2004  mSUGRA with WMAP constraint <  DM h 2 < (2 sigma) WMAP cosmic microwave background radiation measurement lead to :  total matter h 2   and  baryon h 2   PDG July 2004  for quasi mass-degenerate neutralino (  ) and slepton (  ), both  and  (co-)annihilations combine to regulate the amount of relic DM  N(  ) / N(  ) ~ exp(-20  m/m) ~ 1   m < 10 GeV and m < 400 GeV  attractive mechanisms also beyond mSUGRA D.Hooper et al. Phys.Lett.B562(2003)18

Philip BambadeSUSY small angle electron tagging requirements - SLAC 6-8/1/ Detection of l  ,  sleptons for small  m P.B. et al. hep-ph/ signal major background :  ee  l  0 l  0 ee  (e)(e) l l  ~ 10 fb  ~ 10 6 fb Transverse view ~ Near threshold E l   (1   ) (m l 2 - m  2 ) / 2 m l ~  m  (1   )  background  must tag spectator electron (e.g. for  m  5 Gev):  ~  m  (1   ) / E beam  factor ~ 5-10 mrad ( factor  1 < 1 for   ) ~~ ~~~

Philip BambadeSUSY small angle electron tagging requirements - SLAC 6-8/1/ Preliminary  result benchmark point D’ with  m  -  = 12 GeV signal efficiency ~ 80% spectrum end-points preserved Mass extraction from endpoints :  m s  = 0.18 GeV and  m  = 0.17 GeV  m = 12 GeV  assumed tagging down to  ~ mrad After requiring N  =2 Normalized for L=500fb -1 P.B. et al. hep-ph/

Philip BambadeSUSY small angle electron tagging requirements - SLAC 6-8/1/ Preliminary  results benchmark point D’ with  m  -  = 5 GeV P.B. et al. hep-ph/ H.-U. Martyn hep-ph/ More difficult  Missing energies from neutrinos,  Very soft final state  electron tagging down to  ~ 5 mrad Two complementary strategies : i. For large signal cross section and 2m stau << E cm  end-point method ii. For small signal cross section and 2m stau ~ E cm  event counting method

Philip BambadeSUSY small angle electron tagging requirements - SLAC 6-8/1/ Main selection cuts for  1.Veto energetic forward electrons/photons 2.Number of charged tracks : 1 or 3 prongs, no 2 muons, charge conservation 3.15 o < q thrust < 165 o, acoplanarity angle < 160 o 4.P max 2.5 GeV 5.  T : P t sum w.r.t. the thrust axis in transverse plane to the beam > 2.75 (or 2) GeV (P Tmiss dependent) 6.Azimuthal cut on  T in the case of 20mrad crossing-angle Assumed ideal reconstruction in detector acceptance (modeled in SGV) Assumed ideal electron/photon veto down to 3.2mrad for P t > 0.8 GeV Z. Zhang

Philip BambadeSUSY small angle electron tagging requirements - SLAC 6-8/1/ Preliminary  result benchmark point D’ with  m  -  = 5 GeV Thrust axis angle in 3-dim  P T wrt thrust axis in the transverse plane Azimuthal dependence of the transverse momentum head-on crossing-angle efficiency ~ 11 % ~ 8 % Moderate effect of 2 nd hole after additional cut P.B. et al. hep-ph/  c  20 mrad

Philip BambadeSUSY small angle electron tagging requirements - SLAC 6-8/1/ Luminosity, E CM and efficiency optimization benchmark point D’ with  m  -  = 5 GeV  mass precision wrt efficiency effect from 2 nd hole only Relative  mass precision from cross-section measurements near the production threshold with negligible background 8% 11%

Philip BambadeSUSY small angle electron tagging requirements - SLAC 6-8/1/ Mass measurement in case of background bkgd events Mass precision degrades when background contribution increases Veto efficiency & analysis cut optimization essential High integrated luminosity will always help M. Berggren

Philip BambadeSUSY small angle electron tagging requirements - SLAC 6-8/1/ Tagging used & needed (preliminary examples) V. Drugakov angle [rad] rejection obtained (200 GeV) angle [rad]  /bin[fb] rejection needed for S/B ~ 1 ee  ee  after analysis cuts for  m  5GeV algorithm Beamcal design  S/B ~ 1/2 Z. Zhang

Philip BambadeSUSY small angle electron tagging requirements - SLAC 6-8/1/ Simplifying assumptions, caveats  future work 1.Assumed 200 GeV electrons only  also low energy tail 2.Did not use all info  hard cases often accompanied by HE photon 3.Gain by specializing algorithm for HE electrons 4.Energy reconstruction and longitudinal distribution not fully used 5.Include (lower energy) em objects from Comptons in veto algorithm 6.Interpolation underestimates efficiency (limited statistical precision) 7.Muons/hadrons within the shower are not simulated 8. … Starting program to compare capabilities with respect to LC / MDI parameters ( besides BeamCAL itself ) Min.radius – L* – B field – crossing-angle ( + serpentine ) – N bunch – E CMS V. Drugakov, W. Lohmann rejection  f (angle) S/B in  with  m  5 GeV Criteria

Philip BambadeSUSY small angle electron tagging requirements - SLAC 6-8/1/ Summary and conclusions 1.Neutralinos and sleptons with small mass differences can be measured at the ILC 2.Important complementary to LHC 3.Link to cosmology : Planck constraints  2 % 4.reach (m,  m) / precision depend critically on very forward electron rejection :  5-10 mrad 5.Program to compare capability wrt different LC and MDI parameters  Snowmass’05 6.Program to design, prototype and test BeamCAL 7.Check other ILC physics requiring forward veto