NIU Workshop R. Frey1 Reconstruction Issues for Silicon/Tungsten ECal R. Frey U. Oregon NIU Workshop, Nov 8, 2002.

Slides:



Advertisements
Similar presentations
SiW ECAL R&D in CALICE Nigel Watson Birmingham University For the CALICE Collab. Motivation CALICE Testbeam Calibration Response/Resolution MAPS Option.
Advertisements

LC Calorimeter Testbeam Requirements Sufficient data for Energy Flow algorithm development Provide data for calorimeter tracking algorithms  Help setting.
Portland, October 20, 2003Vaclav Vrba, Institute of Physics, AS CR 1 Vaclav Vrba* Institute of Physics, AS CR, Prague *for CALICE collaboration Silicon.
Henri Videau LLR Ecole polytechnique - IN2P3/CNRSCalor Calorimetry optimised for jets Henri Videau Jean- Claude Brient Laboratoire Leprince-Ringuet.
J-C. BRIENT (LLR) 1  Introduction with pictures  Prototype design and construction  R&D on the design of the full scale calorimeter CALICE - ECAL silicon-tungsten.
P. Gay Energy flow session1 Analytic Energy Flow F. Chandez P. Gay S. Monteil CALICE Coll.
Victoria04 R. Frey1 Silicon/Tungsten ECal Status and Progress Ray Frey University of Oregon Victoria ALCPG Workshop July 29, 2004 Overview Current R&D.
Testbeam Requirements for LC Calorimetry S. R. Magill for the Calorimetry Working Group Physics/Detector Goals for LC Calorimetry E-flow implications for.
LC Calorimeter Ideas and R&D Opportunities Ray Frey, U. Oregon Cornell, Apr 19, 2002 Physics implications The environment The “energy flow” concept Current.
10 Nov 2004Paul Dauncey1 MAPS for an ILC Si-W ECAL Paul Dauncey Imperial College London.
R Frey 9/15/20031 Si/W ECal Update Outline Progress on silicon and tungsten Progress on readout electronics EGS4 v Geant4 Ray Frey M. Breidenbach, D. Freytag,
7 June 2006 SLAC DOE Review M. Breidenbach 1 KPiX & EMCal SLAC –D. Freytag –G. Haller –R. Herbst –T. Nelson –mb Oregon –J. Brau –R. Frey –D. Strom BNL.
Design Considerations for a Si/W EM Cal. at a Linear Collider M. Breidenbach, D. Freytag, G. Haller, M. Huffer, J.J Russell Stanford Linear Accelerator.
 Performance Goals -> Motivation  Analog/Digital Comparisons  E-flow Algorithm Development  Readout R&D  Summary Optimization of the Hadron Calorimeter.
R Frey ESTB20111 Silicon-Tungsten Electromagnetic Calorimeter R&D Collaboration M. Breidenbach, D. Freytag, N. Graf, R. Herbst, G. Haller, J. Jaros, T.
28 June 2002Santa Cruz LC Retreat M. Breidenbach1 SD – Silicon Detector EM Calorimetry.
1 Benchmarking the SiD Tim Barklow SLAC Sep 27, 2005.
ICLC Paris R. Frey1 Silicon/Tungsten ECal for SiD – Status and Progress Ray Frey University of Oregon ICLC Paris, April 22, 2004 Overview (brief) Current.
Energy Flow Studies Steve Kuhlmann Argonne National Laboratory for Steve Magill, Brian Musgrave, Norman Graf, U.S. LC Calorimeter Group.
LCWS2002 R. Frey1 Silicon/Tungsten ECal for the SD Detector M. Breidenbach, D. Freytag, G. Haller, M. Huffer, J.J Russell Stanford Linear Accelerator Center.
ITBW07 R. Frey1 ECal with Integrated Electronics Ray Frey, U of Oregon Ongoing R&D Efforts: CALICE silicon-tungsten ECal – 2 parallel efforts:  Technology.
SiD Cal R. Frey1 Some EGS Studies… Compare with Geant4  Questions of range/cutoff parameters EM Resolution understood? Moliere radius – readout gap relation.
19 March 2005 LCWS 05 M. Breidenbach 1 SiD Electronic Concepts SLAC –D. Freytag –G. Haller –J. Deng –mb Oregon –J. Brau –R. Frey –D. Strom BNL –V. Radeka.
Michele Faucci Giannelli TILC09, Tsukuba, 18 April 2009 SiW Electromagnetic Calorimeter Testbeam results.
R Frey SiD at SLAC1 SiD ECal overview Physics (brief) Proposed technical solutions: silicon/tungsten  “traditional” Si sensors  MAPS Progress and Status.
Progress with the Development of Energy Flow Algorithms at Argonne José Repond for Steve Kuhlmann and Steve Magill Argonne National Laboratory Linear Collider.
Development of Particle Flow Calorimetry José Repond Argonne National Laboratory DPF meeting, Providence, RI August 8 – 13, 2011.
1 LumiCal Optimization and Design Takashi Maruyama SLAC SiD Workshop, Boulder, September 18, 2008.
November 6, 2004Carl Bromberg, FNAL LAr Exp. Workshop Nov. 4-6, Particle ID, energy resolution, neutrino flavor tagging, efficiencies, backgrounds,
J-C BRIENT Prague Performances studies of the calorimeter/muon det. e + e –  W + W – at  s=800 GeV Simulation SLAC-Gismo Simulation MOKKA-GEANT4.
The CALICE Si-W ECAL - physics prototype 2012/Apr/25 Tamaki Yoshioka (Kyushu University) Roman Poschl (LAL Orsay)
The ZEUS Hadron-Electron-Separator Performance and Experience Peter Göttlicher (DESY) for the ZEUS-HES-group Contributions to HES Germany, Israel, Japan,
Silicon-Tungsten EM Calorimeter R&D
V.Dzhordzhadze1 Nosecone Calorimeter Simulation Vasily Dzhordzhadze University of Tennessee Muon Physics and Forward Upgrades Workshop Santa Fe, June 22,
R Frey SiD ECal at ALCPG071 SiD ECal overview Physics requirements Proposed technical solutions: silicon/tungsten  “traditional” Si diodes  MAPS LOI.
Silicon Detector Tracking ALCPG Workshop Cornell July 15, 2003 John Jaros.
11/18/2016 Test beam studies of the W-Si tracking calorimeter for the PHENIX forward upgrade Y. Kwon, Yonsei Univ., PHENIX.
Particle-flow Algorithms in America Dhiman Chakraborty N. I. Center for Accelerator & Detector Development for the International Conference.
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Siena October th Topical Seminar on Innovative Particle and.
R Frey LCWS071 A Silicon-Tungsten ECal with Integrated Electronics for the ILC -- status Currently optimized for the SiD concept Baseline configuration:
J-C Brient-DESY meeting -Jan/ The 2 detector options today …. SiD vs TDR [ * ] [ * ] J.Jaros at ALCPG-SLAC04 ECAL ECAL tungsten-silicon both optionsHCAL.
CALICE collaboration CALICE collaboration J-C BRIENT LCWS02 – Jeju Island The CALICE –ECAL Silicon - V. Vrba Very FE - S. Manen Readout/DAQ - P. Dauncey.
Ties Behnke: Event Reconstruction 1Arlington LC workshop, Jan 9-11, 2003 Event Reconstruction Event Reconstruction in the BRAHMS simulation framework:
Individual Particle Reconstruction The PFA Approach to Detector Development for the ILC Steve Magill (ANL) Norman Graf, Ron Cassell (SLAC)
Silicon/Tungsten ECal for the SD Detector – Status and Progress R. Frey U. Oregon UT Arlington, Jan 10, 2003.
1 Plannar Active Absorber Calorimeter Adam Para, Niki Saoulidou, Hans Wenzel, Shin-Shan Yu Fermialb Tianchi Zhao University of Washington ACFA Meeting.
5 May 2006Paul Dauncey1 The ILC, CALICE and the ECAL Paul Dauncey Imperial College London.
RD program on hybrids & Interconnects Background & motivation At sLHC the luminosity will increase by a factor 10 The physics requirement on the tracker.
1 LoI FCAL Takashi Maruyama SLAC SiD Workshop, SLAC, March 2-4, 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K. Krempetz T. MarkiewiczBNLW.
A Forward Calorimeter (FoCal) as upgrade for the ALICE experiment at CERN S. Muhuri a, M. Reicher b and T. Tsuji c a Variable Energy Cyclotron Centre,
Durham TB R. Frey1 ECal R&D in N. America -- Test Beam Readiness/Plans Silicon-tungsten SLAC, Oregon, Brookhaven (SOB) Scintillator tiles – tungsten U.
IOP HEPP Conference Upgrading the CMS Tracker for SLHC Mark Pesaresi Imperial College, London.
SiD Calorimeter R&D Collaboration
The ECal in the SiD LOI Overview of status and progress
Where are we? What do we want to do next? Some thoughts
A SiW EM Calorimeter for the Silicon Detector
detector development readout electronics interconnects bump bonding
Calorimetry for a CLIC experiment
Report about “Forward Instrumentation” Issues
   Calorimetry et al.    SUMMARY 12 contributions Tile HCAL
LCDRD ECal R&D Physics goals drive the design
SiD Electronic Concepts
A Silicon-Tungsten ECal for the SiD Concept
Simulation study for Forward Calorimeter in LHC-ALICE experiment
Backgrounds using v7 Mask in 9 Si Layers at a Muon Higgs Factory
Michele Faucci Giannelli
Steve Magill Steve Kuhlmann ANL/SLAC Motivation
LC Calorimeter Testbeam Requirements
Some EGS Studies… Compare with Geant4 Questions of range/cutoff
Presentation transcript:

NIU Workshop R. Frey1 Reconstruction Issues for Silicon/Tungsten ECal R. Frey U. Oregon NIU Workshop, Nov 8, 2002

NIU Workshop R. Frey2 Outline ECal Physics Goals Current implementations  SD  TESLA The hardware constraints  Resolution requirements What simulation studies do the detector prototypers (we) want the simulators (us) to do -- discussion

NIU Workshop R. Frey3 ECal Goals Photons in Jets  Id. with high efficiency and measure with reasonable E resolution … in a very busy environment. Demand eff>95% with high purity Photon shower imaging   vertexing (impact param. resolution  1 cm)   º→   Separation from nearby photons, MIPs, h-shower fragments MIP tracking (h , muons)  Id. Hadrons which shower in ECal Reconstruction of taus (eg  →  →    º →  -  -mip) b/c reconstruction – include neutrals in M Q estimate e’s and Bhabhas (Lum. spectrum) – easy (readout dynamic range) Backgrounds immunity  Segmentation  Timing

4 SD Si/W 5x5 mm 2 pixel  50M pixels For each (6 inch) wafer:  1000 pixels (approx)  One readout chip (ROC) Simple, scalable detector design:  Minimum of fab. steps  Use largest available wafers  Detector cost below $2/cm 2  Electronics cost even less  A reasonable (cheap?) cost M. Breidenbach, D. Freytag, G. Haller, M. Huffer, J.J Russell Stanford Linear Accelerator Center R. Frey, D. Strom U. Oregon V. Radeka Brookhaven National Lab

5 Readout chip connections Use bump-bonding technique to mate ROC to array of pads on wafer

6 Pad Silicon wafer PCB Aluminium Cooling tube VFE chip 1.3 mm 1.0 mm 0.5 mm Thermal contact Gluing for electrical contact AC coupling elements ? power line command line signal out CALICE design with electronics inside detector

NIU Workshop R. Frey7 Si Timing Dynamic range: MIPs to Bhabhas  About factor 2000 range per pixel  Want to maintain resolution at both ends of scale Timing: What do we need?  NLC: 200 ns bunch trains – Do we need to resolve cal. hits within a bunch?  Bhabhas: 15 Hz for >60 mrad at  What about 2-photon/non-HEP background overlays?  Exotic new physics signatures  Can try to provide timing for each pixel Is ≈10 ns resolution sufficient ?

NIU Workshop R. Frey8 What are the constraints from the hardware? Dynamic range OK Transverse segmentation almost independent of cost within reasonable range (watch thermal load)  Segmentation < Moliere radius is OK Radiation damage probably non-issue Timing perhaps possible with resolution of ns Moliere radius (  9mm x 2) Energy resolution ↔ long. sampling ↔ Money  More coarse with ECal depth  Also: pattern recognition implications

NIU Workshop R. Frey9 e+e-→jj, 200 GeV; LCDRoot FastMC Perfect pattern recog. 0.01/sqrt(E)  0.01 (EM) 0.01/sqrt(E)  0.01 (HAD) ← 0.10/sqrt(Ej) ← 0.11/sqrt(Mjj)

NIU Workshop R. Frey10 EM: 0.12/sqrt(E)  0.01 HAD: 0.50/sqrt(E)  /sqrt(Ej) 0.19/sqrt(Ej) EM: 0.20/sqrt(E)  0.01 HAD: 0.70/sqrt(E)  /sqrt(Ej)

11 E  > 0.5 GeV 0.19/sqrt(Ej) EE E h0 E  > 1 GeV, E h0 >1 GeV 0.20/sqrt(Ej) E  > 2 GeV 0.20/sqrt(Ej)

NIU Workshop R. Frey12 What simulations studies do we need? EFA tuning ↔ segmentation   -MIP separation  , tau, pi-zero reconstruction Background overlays ↔ timing requirement Longitudinal sampling  EGS4  Geant4 Distribution of hit occupancy in a detector wafer