The metal-oxide field-effect transistor (MOSFET)

Slides:



Advertisements
Similar presentations
Lecture Metal-Oxide-Semiconductor (MOS) Field-Effect Transistors (FET) MOSFET Introduction 1.
Advertisements

ECA1212 Introduction to Electrical & Electronics Engineering Chapter 6: Field Effect Transistor by Muhazam Mustapha, October 2011.
Physical structure of a n-channel device:
MODULE SYSTEM LOGIC GATE CIRCUIT DQ CMOS Inverter ASIC Full-Custom Semi-Custom Programmable FPGA PLD Cell-Based Gate Arrays General Purpose DRAM & SRAM.
Metal-Oxide-Semiconductor Fields Effect Transistors (MOSFETs) From Prof. J. Hopwood.
Chapter 6 The Field Effect Transistor
Transistors These are three terminal devices, where the current or voltage at one terminal, the input terminal, controls the flow of current between the.
MOSFETs Monday 19 th September. MOSFETs Monday 19 th September In this presentation we will look at the following: State the main differences between.
Lecture 11: MOS Transistor
Lecture #26 Gate delays, MOS logic
Introduction to VLSI Circuits and Systems, NCUT 2007 Chapter 6 Electrical Characteristic of MOSFETs Introduction to VLSI Circuits and Systems 積體電路概論 賴秉樑.
Spring 2007EE130 Lecture 35, Slide 1 Lecture #35 OUTLINE The MOS Capacitor: Final comments The MOSFET: Structure and operation Reading: Chapter 17.1.
10/8/2004EE 42 fall 2004 lecture 171 Lecture #17 MOS transistors MIDTERM coming up a week from Monday (October 18 th ) Next Week: Review, examples, circuits.
Lecture 15 OUTLINE MOSFET structure & operation (qualitative)
EE415 VLSI Design The Devices: MOS Transistor [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
Lecture #16 OUTLINE Diode analysis and applications continued
11/3/2004EE 42 fall 2004 lecture 271 Lecture #27 MOS LAST TIME: NMOS Electrical Model – Describing the I-V Characteristics – Evaluating the effective resistance.
Reading: Finish Chapter 6
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
Week 8b OUTLINE Using pn-diodes to isolate transistors in an IC
Chap. 5 Field-effect transistors (FET) Importance for LSI/VLSI –Low fabrication cost –Small size –Low power consumption Applications –Microprocessors –Memories.
Spring 2007EE130 Lecture 36, Slide 1 Lecture #36 ANNOUNCEMENTS Updated information for Term Project was posted on 4/14 Reminder: Coffee Hour today at ~4PM!
EE105 Fall 2007Lecture 16, Slide 1Prof. Liu, UC Berkeley Lecture 16 OUTLINE MOS capacitor (cont’d) – Effect of channel-to-body bias – Small-signal capacitance.
EE314 IBM/Motorola Power PC620 IBM Power PC 601 Motorola MC68020 Field Effect Transistors.
Storey: Electrical & Electronic Systems © Pearson Education Limited 2004 OHT 20.1 Field-Effect Transistors  Introduction  An Overview of Field-Effect.
FET ( Field Effect Transistor)
Metal-Oxide- Semiconductor (MOS) Field-Effect Transistors (MOSFETs)
Metal-Oxide-Semiconductor Field Effect Transistors
Lecture 19 OUTLINE The MOSFET: Structure and operation
Types of MOSFETs ECE 2204.
Chapter 28 Basic Transistor Theory. 2 Transistor Construction Bipolar Junction Transistor (BJT) –3 layers of doped semiconductor –2 p-n junctions –Layers.
Semiconductor Devices III Physics 355. Transistors in CPUs Moore’s Law (1965): the number of components in an integrated circuit will double every year;
Transistors Three-terminal devices with three doped silicon regions and two P-N junctions versus a diode with two doped regions and one P-N junction Two.
Field-Effect Transistor
EEE1012 Introduction to Electrical & Electronics Engineering Chapter 7: Field Effect Transistor by Muhazam Mustapha, October 2010.
Digital Integrated Circuits© Prentice Hall 1995 Introduction The Devices.
Field Effect Transistor (FET)
ECE 342 Electronic Circuits 2. MOS Transistors
Week 11b Lecture Materials Diodes and some of their uses: Review of pn-diode structure Diode I-V characteristics: Actual characteristic – exponential Ideal.
Dr. Nasim Zafar Electronics 1 - EEE 231 Fall Semester – 2012 COMSATS Institute of Information Technology Virtual campus Islamabad.
Norhayati Soin 06 KEEE 4426 WEEK 7/1 6/02/2006 CHAPTER 2 WEEK 7 CHAPTER 2 MOSFETS I-V CHARACTERISTICS CHAPTER 2.
Chapter 5: Field Effect Transistor
1 Metal-Oxide-Semicondutor FET (MOSFET) Copyright  2004 by Oxford University Press, Inc. 2 Figure 4.1 Physical structure of the enhancement-type NMOS.
EXAMPLE 6.1 OBJECTIVE Fp = 0.288 V
Chapter 4 Field-Effect Transistors
DMT121 – ELECTRONIC DEVICES
1 Fundamentals of Microelectronics  CH1 Why Microelectronics?  CH2 Basic Physics of Semiconductors  CH3 Diode Circuits  CH4 Physics of Bipolar Transistors.
Field Effect Transistor. What is FET FET is abbreviation of Field Effect Transistor. This is a transistor in which current is controlled by voltage only.
Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004.
ECE340 ELECTRONICS I MOSFET TRANSISTORS AND AMPLIFIERS.
1 Chapter 5. Metal Oxide Silicon Field-Effect Transistors (MOSFETs)
UNIT I MOS TRANSISTOR THEORY AND PROCESS TECHNOLOGY
Structure and Operation of MOS Transistor
© 2000 Prentice Hall Inc. Figure 5.1 n-Channel enhancement MOSFET showing channel length L and channel width W.
11. 9/15 2 Figure A 2 M+N -bit memory chip organized as an array of 2 M rows  2 N columns. Memory SRAM organization organized as an array of 2.
1 Other Transistor Topologies 30 March and 1 April 2015 The two gate terminals are tied together to form single gate connection; the source terminal is.
Field Effect Transistors (1) Dr. Wojciech Jadwisienczak EE314.
MOSFET Current Voltage Characteristics Consider the cross-sectional view of an n-channel MOSFET operating in linear mode (picture below) We assume the.
CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 2.
Metal-oxide-semiconductor field-effect transistors (MOSFETs) allow high density and low power dissipation. To reduce system cost and increase portability,
Field Effect Transistor (FET)
CP 208 Digital Electronics Class Lecture 6 March 4, 2009.
ECE 333 Linear Electronics
Microelectronic Circuit Design McGraw-Hill Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock.
Intro to Semiconductors and p-n junction devices
Notes on Diodes 1. Diode saturation current:  
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
Lecture #17 (cont’d from #16)
Lecture #15 OUTLINE Diode analysis and applications continued
Presentation transcript:

The metal-oxide field-effect transistor (MOSFET) Week 9b OUTLINE The metal-oxide field-effect transistor (MOSFET) Structure and operation of the MOSFET MOSFET as a 3-terminal device pn diodes isolate transistors in an IC MOSFET current-voltage characteristics The MOSFET as a controlled resistance MOSFET as an amplifier or electronically controlled switch EE42/100, Spring 2006 Week 9b, Prof. White

Modern Field Effect Transistor (FET) An electric field is applied normal to the surface of the semiconductor (by applying a voltage to an overlying “gate” electrode), to modulate the conductance of the semiconductor Modulate drift current flowing between 2 contacts (“source” and “drain”) by varying the voltage on the “gate” electrode N-channel metal-oxide- semiconductor field-effect transistor (NMOSFET) EE42/100, Spring 2006 Week 9b, Prof. White

MOSFET GATE DRAIN SOURCE NMOS: N-channel Metal Oxide Semiconductor W W = channel width L L = channel length GATE oxide insulator n “Metal” (heavily doped poly-Si) n p-type silicon DRAIN SOURCE A GATE electrode is placed above (electrically insulated from) the silicon surface, and is used to control the resistance between the SOURCE and DRAIN regions EE42/100, Spring 2006 Week 9b, Prof. White

N-channel MOSFET IG IS ID Gate IG Drain Source IS oxide insulator gate ID n n p Without a gate-to-source voltage applied, no current can flow between the source and drain regions. Above a certain gate-to-source voltage (threshold voltage VT), a conducting layer of mobile electrons is formed at the Si surface beneath the oxide. These electrons can carry current between the source and drain. EE42/100, Spring 2006 Week 9b, Prof. White

N-channel vs. P-channel MOSFETs NMOS PMOS p-type Si n+ poly-Si n-type Si p+ poly-Si n+ n+ p+ p+ For current to flow, VGS > VT Enhancement mode: VT > 0 Depletion mode: VT < 0 Transistor is ON when VG=0V For current to flow, VGS < VT Enhancement mode: VT < 0 Depletion mode: VT > 0 Transistor is ON when VG=0V (“n+” denotes very heavily doped n-type material; “p+” denotes very heavily doped p-type material) EE42/100, Spring 2006 Week 9b, Prof. White

Why are pn Junctions Important for ICs? The basic building block in digital ICs is the MOS (metal-oxide-semiconductor) transistor, which contains reverse-biased diodes. pn junctions are important for electrical isolation of transistors located next to each other at the surface of a silicon wafer. The junction capacitance of these diodes can limit the performance (operating speed) of digital circuits EE42/100, Spring 2006 Week 9b, Prof. White

Device Isolation using pn Junctions p-type Si n regions of n-type Si a b No current flows if voltages are applied between n-type regions, because two pn junctions are “back-to-back” n-region p-region a b => n-type regions isolated in p-type substrate and vice versa EE42/100, Spring 2006 Week 9b, Prof. White

Transistor A Transistor B n n n n p-type Si We can build large circuits consisting of many transistors without worrying about current flow between devices. The p-n junctions isolate the transistors because there is always at least one reverse-biased p-n junction in every potential current path. EE42/100, Spring 2006 Week 9b, Prof. White

MOSFET Circuit Symbols G G NMOS p-type Si n+ poly-Si n+ n+ S S Body G G PMOS n-type Si p+ poly-Si p+ p+ S S Body EE42/100, Spring 2006 Week 9b, Prof. White

Water Model for P-channel MOSFET EE42/100, Spring 2006 Week 9b, Prof. White

MOSFET Terminals The voltage applied to the GATE terminal determines whether current can flow between the SOURCE & DRAIN terminals. For an n-channel MOSFET, the SOURCE is biased at a lower potential (often 0 V) than the DRAIN (Electrons flow from SOURCE to DRAIN when VG > VT) For a p-channel MOSFET, the SOURCE is biased at a higher potential (often the supply voltage VDD) than the DRAIN (Holes flow from SOURCE to DRAIN when VG < VT ) The BODY terminal is usually connected to a fixed potential. For an n-channel MOSFET, the BODY is connected to 0 V For a p-channel MOSFET, the BODY is connected to VDD EE42/100, Spring 2006 Week 9b, Prof. White

NMOSFET IG vs. VGS Characteristic Consider the current IG (flowing into G) versus VGS : IG G +  S D VDS oxide semiconductor +  VGS IG The gate is insulated from the semiconductor, so there is no significant steady gate current. always zero! VGS EE42/100, Spring 2006 Week 9b, Prof. White

NMOSFET ID vs. VDS Characteristics Next consider ID (flowing into D) versus VDS, as VGS is varied: G ID +  S D VDS oxide semiconductor +  VGS ID Above threshold (VGS > VT): “inversion layer” of electrons appears, so conduction between S and D is possible VGS > VT zero if VGS < VT VDS Below “threshold” (VGS < VT): no charge  no conduction EE42/100, Spring 2006 Week 9b, Prof. White

The MOSFET as a Controlled Resistor The MOSFET behaves as a resistor when VDS is low: Drain current ID increases linearly with VDS Resistance RDS between SOURCE & DRAIN depends on VGS RDS is lowered as VGS increases above VT NMOSFET Example: oxide thickness  tox ID VGS = 2 V VGS = 1 V > VT VDS Inversion charge density Qi(x) = -Cox[VGS-VT-V(x)] where Cox  eox / tox IDS = 0 if VGS < VT EE42/100, Spring 2006 Week 9b, Prof. White

MOSFET as a Controlled Resistor (cont’d) average value of V(x) We can make RDS low by applying a large “gate drive” (VGS  VT) making W large and/or L small EE42/100, Spring 2006 Week 9b, Prof. White

ID vs. VDS Characteristics The MOSFET ID-VDS curve consists of two regions: 1) Resistive or “Triode” Region: 0 < VDS < VGS  VT 2) Saturation Region: VDS > VGS  VT process transconductance parameter “CUTOFF” region: VG < VT EE42/100, Spring 2006 Week 9b, Prof. White

MOSFET regions of operation Cutoff: VGS </= VT correction ID = 0 Resistive: ID ~ (VGS – VT)VDS Saturation: ID ~ (VGS – VT)2 EE42/100, Spring 2006 Week 9b, Prof. White

A linear amplifier: Input voltage applied between MOSFET Uses A MOSFET can be used as A linear amplifier: Input voltage applied between gate and source; output voltage appears between source and drain or An electronic switch: Switches between no current conduction between source and drain, and heavy conduction between source and drain as voltage applied between gate and source changes from low to high for NMOSFET EE42/100, Spring 2006 Week 9b, Prof. White

Common-Source (CS) Amplifier The input voltage vs causes vGS to vary with time, which in turn causes iD to vary. The changing voltage drop across RD causes an amplified (and inverted) version of the input signal to appear at the drain terminal. VDD RD iD vs + vOUT = vDS  D  + + vIN = vGS  S VBIAS + – EE42/100, Spring 2006 Week 9b, Prof. White

Load-Line Analysis of CS Amplifier The operating point of the circuit can be determined by finding the intersection of the appropriate MOSFET iD vs. vDS characteristic and the load line: iD (mA) load-line equation: vGS (V) vDS (V) EE42/100, Spring 2006 Week 9b, Prof. White

Voltage Transfer Function vOUT Goal: Operate the amplifier in the high-gain region, so that small changes in vIN result in large changes in vOUT vIN (1): transistor biased in cutoff region (2): vIN > VT ; transistor biased in saturation region (3): transistor biased in saturation region (4): transistor biased in “resistive” or “triode” region EE42/100, Spring 2006 Week 9b, Prof. White

Subscript convention: Double-subscripts denote DC sources: Notation Subscript convention: VDS  VD – VS , VGS  VG – VS , etc. Double-subscripts denote DC sources: VDD , VCC , ISS , etc. To distinguish between DC and incremental components of an electrical quantity, the following convention is used: DC quantity: upper-case letter with upper-case subscript ID , VDS , etc. Incremental quantity: lower-case letter with lower-case subscript id , vds , etc. Total (DC + incremental) quantity: lower-case letter with upper-case subscript iD , vDS , etc. EE42/100, Spring 2006 Week 9b, Prof. White

Quiescent Operating Point The operating point of the amplifier for zero input signal (vs = 0) is often referred to as the quiescent operating point. (Another word: bias.) The bias point should be chosen so that the output voltage is approximately centered between VDD and 0 V. vs varies the input voltage around the input bias point. Note: The relationship between vOUT and vIN is not linear; this can result in a distorted output voltage signal. If the input signal amplitude is very small, however, we can have amplification with negligible distortion. EE42/100, Spring 2006 Week 9b, Prof. White

Dynamic Random-Access Memory (DRAM) with NMOSFET switch and capacitor Figure 0.1 Example of a densely populated integrated circuit – the DRAM Column Drivers and Sense Amplifiers Column Address Decoder/Selector Row Address Decoder W o rd Line Bit Line Dynamic Random-Access Memory (DRAM) with NMOSFET switch and capacitor EE42/100, Spring 2006 Week 9b, Prof. White