Dipole-dipole interactions in Rydberg states. Outline Strontium experiment overview Routes to blockade Dipole-dipole effects.

Slides:



Advertisements
Similar presentations
Photoexcitation and Ionization of Cold Helium Atoms R. Jung 1,2 S. Gerlach 1,2 G. von Oppen 1 U. Eichmann 1,2 1 Technical University of Berlin 2 Max-Born-Institute.
Advertisements

Outlines Rabi Oscillations Properties of Rydberg atoms Van Der Waals Force and Rydberg Blockade The implementation of a CNOT gate Preparation of Engtanglement.
First Year Seminar: Strontium Project
Rydberg & plasma physics using
Magnetic Resonance Imaging
Mallory Traxler April /39  Continuous atom laser  Continuous, coherent stream of atoms  Outcoupled from a BEC  Applications of atom lasers:
Ultra-Cold Strontium Atoms in a Pyramidal Magneto-Optical Trap A.J. Barker 1, G. Lochead 2, D. Boddy 2, M. P. A. Jones 2 1 Ponteland High School, Newcastle,
Laser cooling of molecules. 2 Why laser cooling (usually) fails for molecules Laser cooling relies on repeated absorption – spontaneous-emission events.
P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms in Laboratoire Aimé Cotton 04/12/2013.
Probing the Rydberg spectrum of strontium – group meeting Probing the Rydberg spectrum of strontium James Millen.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Approaches to Rydberg spatial distribution measurement Graham Lochead 24/01/11.
Danielle Boddy Durham University – Atomic & Molecular Physics group Laser locking to hot atoms.
Laser Magnetized Plasma Interactions for the Creation of Solid Density Warm (~200 eV) Matter M.S. R. Presura, Y. Sentoku, A. Kemp, C. Plechaty,
Graham Lochead YAO 2009 Towards a strontium pyramid MOT Graham Lochead Durham University
A Magneto-Optical Trap for Strontium James Millen A Magneto-Optical Trap for Strontium – Group meeting 29/09/08.
Danielle Boddy Durham University – Atomic & Molecular Physics group Red MOT is on its way to save the day!
Rydberg excitation laser locking for spatial distribution measurement Graham Lochead 24/01/11.
The story unfolds… James Millen The story unfolds… – Group meeting 12/04/10.
Studying our cold Rydberg gas James Millen. Level scheme (5s 2 ) 1 S 0 461nm 32MHz (5s5p) 1 P 1 (5sns) 1 S 0 (5snd) 1 D 2 Continuum ~413nm Studying our.
Rydberg & plasma physics using ultra-cold strontium James Millen Supervisor: Dr. M.P.A. Jones Rydberg & plasma physics using ultra-cold strontium.
Studying a strontium MOT – group meeting Studying a strontium MOT James Millen.
Graham Lochead 19/07/10 Lens setup for Rydberg spatial distribution.
Autoionization of strontium Rydberg states
References Acknowledgements This work is funded by EPSRC 1.R. P. Abel, U. Krohn, P. Siddons, I. G. Hughes & C. S. Adams, Opt Lett (2009). 2.A.
Quantum Computation Using Optical Lattices Ben Zaks Victor Acosta Physics 191 Prof. Whaley UC-Berkeley.
Excited state spatial distributions Graham Lochead 20/06/11.
Laser-induced vibrational motion through impulsive ionization Grad students: Li Fang, Brad Moser Funding : NSF-AMO October 19, 2007 University of New Mexico.
A strontium detective story James Millen Strontium detective – Group meeting 19/10/09 Ions‽
Trapped Radioactive Isotopes:  icro-laboratories for fundamental Physics EDM in ground state (I=1/2) H = -(d E + μ B) · I/I m I = 1/2 m I = -1/2 2ω12ω1.
TOF Mass Spectrometer &
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Chapter 41 Atomic Structure
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Quantum computing with Rydberg atoms Klaus Mølmer Coherence school Pisa, September 2012.
Observation of Excited Biexciton States in CuCl Quantum Dots : Control of the Quantum Dot Energy by a Photon Itoh Lab. Hiroaki SAWADA Michio IKEZAWA and.
3 He Polarization Tests at UIUC Danielle Chandler David Howell UIUC.
Accurate density measurement of a cold Rydberg gas via non-collisional two-body process Anne Cournol, Jacques Robert, Pierre Pillet, and Nicolas Vanhaecke.
Using this method, the four wave transition linewidth was measured at several different frequencies of current modulation. The following plot shows the.
Coherent excitation of Rydberg atoms on an atom chip
Obtaining Ion and Electron Beams From a source of Laser-Cooled Atoms Alexa Parker, Gosforth Academy  Project Supervisor: Dr Kevin Weatherill Department.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Molecular Deceleration Georgios Vasilakis. Outline  Why cold molecules are important  Cooling techniques  Molecular deceleration  Principle  Theory.
Quantum Optics II – Cozumel, Dec. 6-9, 2004
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Excited state spatial distributions in a cold strontium gas Graham Lochead.
Toward a Stark Decelerator for atoms and molecules exited into a Rydberg state Anne Cournol, Nicolas Saquet, Jérôme Beugnon, Nicolas Vanhaecke, Pierre.
Laser Cooling and Trapping Magneto-Optical Traps (MOTs) Far Off Resonant Traps (FORTs) Nicholas Proite.
Dynamics of Low Density Rydberg Gases Experimental Apparatus E. Brekke, J. O. Day, T. G. Walker University of Wisconsin – Madison Support from NSF and.
Introduction to materials physics #4
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements Progress in deep.
HBr; Updated: Imaging experiments in Crete Labtop..C:……/Crete/HBr/PPT aka.pptx &
Rydberg States of Two Valence Electron Atoms W. E Cooke K.A. Safinya W. Sandner F. Gounand P. Pillet N. H. Tran R. Kachru R. R. Jones.
A. Nass, M. Chapman, D. Graham, W. Haeberli,
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Modification to Various Projects in Raithel’s Lab Louise Niu, University of Michigan REU 2008 Advisor: Georg Raithel
Large Area Plasma Processing System (LAPPS) R. F. Fernsler, W. M. Manheimer, R. A. Meger, D. P. Murphy, D. Leonhardt, R. E. Pechacek, S. G. Walton and.
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Microwave Transitions Between Pair States Composed of Two Rb Rydberg Atoms Jeonghun Lee Advisor: Tom F. Gallagher Department of Physics, University of.
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Manipulating Rydberg Atoms with Microwaves
Chapter 41 Atomic Structure
Excitation control of a cold strontium Rydberg gas
Dan Mickelson Supervisor: Brett D. DePaola
State evolution in cold helium Rydberg gas
Chapter 41 Atomic Structure
Presentation transcript:

Dipole-dipole interactions in Rydberg states

Outline Strontium experiment overview Routes to blockade Dipole-dipole effects

Team strontium Matt JonesCharles Adams MeDan Sadler Danielle Boddy Christophe Vaillant

Rydberg physics Rydberg atoms: States of high principal n Strong, tunable interactions Position Column density Excited state Ground state

Spatial measurements Automatic translation state Lens setup

Autoionization 5s 2 5s5p 5sns(d) 5s Sr + 5pns(d) λ 1 = 461 nm λ 2 = 413 nm λ 3 = 408 nm Resonant ionization process Increases signal over spontaneous ionization Independent excitation and detection Can give spectral and temporal information

Preliminary results Time Repeat MOT + Zeeman Probe + Coupling (1 μs) 408 pulse (1 μs) Electric field pulse (5 μs) ~10 6 atoms at 5 mK Camera image for atom number 408 is focused to 10 μm Translation stage stepped Ions detected on an MCP

Increasing density 5s 2 1 S 0 5s5p 1 P 1 5s4d 1 D 2 5s6s 3 S 1 5s5p 3P23P2 3P13P1 3P03P0 461 nm 679 nm707 nm Current cooling scheme has leak Repumping increases density by approximately an order of magnitude

Förster zeros T.G. Walker and M. Saffman, PRA 77, (2008) Long range van der Waals interaction couples pairs of states : radial part of the interaction : angular part of the interaction Förster zero is where is zero Sum over all final states to get total interaction

Quantization coils I Apply magnetic field to define quantization axis  Polarization well defined, can excite specific m J Need to switch fast  Avoid losing density External coils too slow  Eddy currents in chamber

Quantization coils II Solution: Use internal coils Vertical excitation beams are orthogonal to autoionizing beam

Internuclear axis Internuclear axis aligned with quantization axis  m J projection good Internuclear axis not aligned with quantization axis  m J projection varies Solution: Use S states or make geometry 1D

Summary Signal to noise of spatial measurements is good Close to blockade densities Need to control polarization to avoid Förster zeros