Laser spectroscopic study of ozone in the 100←000 band for the SWIFT instrument M. Guinet, C. Janssen, D. Mondelain, C. Camy-Peyret LPMAA, CNRS- UPMC (France)

Slides:



Advertisements
Similar presentations
D. Chris Benner and V Malathy Devi College of William and Mary Charles E. Miller, Linda R. Brown and Robert A. Toth Jet Propulsion Laboratory Self- and.
Advertisements

PHOBOS-GRUNT GAP \ TDLAS GAP G. Durry, J. Cousin, L. Joly GSMA, CNRS, Reims University, France I. Vinogradov, A. Titov, O. Korablev, M. Gerasimov IKI,
Spectral shapes modeling and remote sensing of greenhouse gases. Toward the OCO and GOSAT experiments and future HITRAN issues.
Yu. I. BARANOV and W. J. LAFFERTY Optical Technology Division Optical Technology Division National Institute of Standards and Technology, Gaithersburg,
Victor Gorshelev, A. Serdyuchenko, M. Buchwitz, J. Burrows, University of Bremen, Germany; N. Humpage, J. Remedios, University of Leicester, UK IMPROVED.
Georg Wagner, Manfred Birk Remote Sensing Technology Institute (IMF) Deutsches Zentrum für Luft- und Raumfahrt (DLR) Shepard A. Clough Clough Radiation.
ULTRA-HIGH RESOLUTION SYNCHROTRON-BASED VUV ABSORPTION SPECTROSCOPY USING A NEW FOURIER TRANSFORM SPECTROMETER: FIRST APPLICATION TO THE ABSORPTION SPECTRA.
HIGH-RESOLUTION ANALYSIS OF VARIOUS PROPANE BANDS: MODELING OF TITAN'S INFRARED SPECTRUM J.-M. Flaud.
The Water Molecule: Line Position and Line Intensity Analyses up to the Second Triad L. H. Coudert, a G. Wagner, b M. Birk, b and J.-M. Flaud a a Laboratoire.
PRESSURE BROADENING AND SHIFT COEFFICIENTS FOR THE BAND OF 12 C 16 O 2 NEAR 6348 cm -1 D. CHRIS BENNER and V MALATHY DEVI Department of Physics,
PERFORMANCE OF THE DELPHI REFRACTOMETER IN MONITORING THE RICH RADIATORS A. Filippas 1, E. Fokitis 1, S. Maltezos 1, K. Patrinos 1, and M. Davenport 2.
 ( ) 0+   ( ) 0–  4 1 Results at 2.5 microns 2 +( ) 1 II (
9th HITRAN Database & Atmospheric Spectroscopy Applications conferences Formaldehyde broadening coefficients Agnès Perrin Laboratoire Interuniversitaire.
SPECTRAL LINE PARAMETERS FOR THE 9 BAND OF ETHANE Malathy Devi & Chris Benner, W&M Rinsland & Smith, NASA Langley Bob Sams & Tom Blake, PNNL Jean-Marie.
Anna Serdyuchenko, Victor Gorshelev, Mark Weber John P. Burrows University of Bremen, Institute for Environmental Physics OSU, Columbus OH, USA1.
11 Collisional effects on spectral shapes and remote sensing H. Tran LISA, CNRS UMR 7583, Université Paris-Est Créteil and Université Paris Diderot
LINE PARAMETERS OF WATER VAPOR IN THE NEAR- AND MID-INFRARED REGIONS DETERMINED USING TUNEABLE LASER SPECTROSCOPY Nofal IBRAHIM, Pascale CHELIN, Johannes.
Jet Propulsion Laboratory California Institute of Technology The College of William and MaryUniversity of Lethbridge.
Explore. Discover. Understand. AIR-BROADENED LINE WIDTHS AND SHIFTS IN THE ν 3 BAND OF 16 O 3 AT TEMPERATURES BETWEEN 160 AND 300 K M. A. H. SMITH and.
Atomic Spectroscopy for Space Applications: Galactic Evolution l M. P. Ruffoni, J. C. Pickering, G. Nave, C. Allende-Prieto.
Anna Serdyuchenko, Victor Gorshelev, Wissam Chehade, Mark Weber, John P. Burrows University of Bremen, Institute for Environmental Physics.
Self- and Air-Broadening, Shifts, and Line Mixing in the ν 2 Band of CH 4 M. A. H. Smith 1, D. Chris Benner 2, V. Malathy Devi 2, and A. Predoi-Cross 3.
Self- and air-broadened line shape parameters in the band of 12 CH 4 : cm -1 V. Malathy Devi Department of Physics The College of William.
LINE PARAMETERS OF THE PH 3 PENTAD IN THE 4-5 µm REGION V. MALATHY DEVI and D. CHRIS BENNER College of William and Mary I.KLEINER CNRS/IPSL-Universites.
Laboratory spectroscopy at DLR Manfred Birk, Georg Wagner, Joep Loos German Aerospace Center (DLR) > 2014 GEISA Workshop > J. Loos Laboratory spectroscopy.
High Precision Mid-Infrared Spectroscopy of 12 C 16 O 2 : Progress Report Speaker: Wei-Jo Ting Department of Physics National Tsing Hua University
New H 2 16 O measurements of line intensities around 1300 cm -1 and 8800 cm - 1 Oudot Charlotte Groupe de Spectrométrie Moléculaire et Atmosphérique Reims,
ACE Spectroscopy for the Atmospheric Chemistry Experiment (ACE) Chris Boone, Kaley Walker, and Peter Bernath HITRAN Meeting June, 2010.
Hot summer of HITRAN2008 I. E. Gordon L. S. Rothman.
Columbus, 18 June 2013 International Symposium on Molecular Spectroscopy 68 th Meeting - June 17-21, 2013, Ohio State University Determination of the Boltzmann.
Measurement techniques and data analysis Instrument descriptions Space instruments What does a data set tell us?
Measurements of N 2 - and O 2 -pressure broadening and pressure-induced shifts for 16 O 12 C 32 S transitions in the 3 band M.A. Koshelev and M.Yu. Tretyakov.
Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire.
HIGH RESOLUTION SPECTROSCOPY USING A TUNABLE THz SYNTHESIZER BASED ON PHOTOMIXING Arnaud Cuisset, Laboratoire de Physico-Chimie de l’Atmosphère, Maison.
Methyl Bromide : Spectroscopic line parameters in the 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire de Dynamique,
Comparison of Experimental and Theoretical Cross-sections of PFBAm By: Paul J. Godin, Stephanie Conway, Angela Hong, Karine Le Bris, Scott Mabury, and.
Broadband Mid-infrared Comb-Resolved Fourier Transform Spectroscopy Kevin F. Lee A. Mills, C. Mohr, Jie Jiang, Martin E. Fermann P. Masłowski.
Yu. I. BARANOV, W. J. LAFFERTY, and G. T. Fraser Optical Technology Division Optical Technology Division National Institute of Standards and Technology,
HIGH PRECISION MID-IR SPECTROSCOPY OF N2O NEAR 4.5 μm Wei-jo (Vivian) Ting and Jow-Tsong Shy Department of Physics National Tsing Hua University Hsinchu,
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
Pressure-broadening of water lines in the THz frequency region: improvements and confirmations for spectroscopic databases G. Cazzoli, C. Puzzarini Dipartimento.
Tony Clough, Mark Shephard and Jennifer Delamere Atmospheric & Environmental Research, Inc. Colleagues University of Wisconsin International Radiation.
Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.
A COMPREHENSIVE INTENSITY STUDY OF THE 4 TORSIONAL BAND OF ETHANE J. NOROOZ OLIAEE, N. Moazzen-Ahmadi Institute for Quantum Science and Technology Department.
Harmonizationof GOME, SCIAMACHY, GOME-2 ozone cross-sections Anna Serdyuchenko, John P. Burrows, Mark Weber, Wissam Chehade University of Bremen, Germany.
DIODE-LASER AND FOURIER-TRANSFORM SPECTROSCOPY OF 14 NH 3 AND 15 NH 3 IN THE NEAR-INFRARED (1.5 µm) Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL Laboratoire.
A new spectroscopic observatory in Créteil to measure atmospheric trace gases in solar occultation geometry C. Viatte, P. Chelin, M. Eremenko, C. Keim,
CO 2 Lineshapes Near 2060nm Thinh Q. Bui California Institute of Technology ISMS 2014.
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 [10 0 1,02 0 1] I ← Band Near 2.7 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
The Influence of Free-Running FP- QCL Frequency Jitter on Cavity Ringdown Spectroscopy of C 60 Brian E. Brumfield* Jacob T. Stewart* Matt D. Escarra**
Yu. I. BARANOV, and W. J. LAFFERTY Optical Technology Division Optical Technology Division National Institute of Standards and Technology, Gaithersburg,
Line Positions and Intensities for the ν 12 Band of 13 C 12 CH 6 V. Malathy Devi 1, D. Chris Benner 1, Keeyoon Sung 2, Timothy J. Crawford 2, Arlan W.
Champaign, June 2015 Samir Kassi, Johannes Burkart Laboratoire Interdisciplinaire de Physique, Université Grenoble 1, UMR CNRS 5588, Grenoble F-38041,
Frequency-comb referenced spectroscopy of v 4 =1 and v 5 =1 hot bands in the 1. 5 µm spectrum of C 2 H 2 Trevor Sears Greg Hall Talk WF08, ISMS 2015 Matt.
Initial Development of High Precision, High Resolution Ion Beam Spectrometer in the Near- Infrared Michael Porambo, Brian Siller, Andrew Mills, Manori.
Concentration Dependence of Line Shapes in the Band of Acetylene Matthew Cich, Damien Forthomme, Greg Hall, Chris McRaven, Trevor Sears, Sylvestre.
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 : ← Band Near 4.3 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
Infrared spectroscopy of planetological molecules Isabelle Kleiner Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Créteil, France.
G. Mevi1,2, G. Muscari1, P. P. Bertagnolio1, I. Fiorucci1
V. MALATHY DEVI and D. CHRIS BENNER
Z. Reed,* O. Polyansky,† J. Hodges*
A THz PHOTOMIXING SYNTHESIZER BASED ON A FIBER FREQUENCY COMB DEDICATED TO HIGH RESOLUTION SPECTROSCOPY OF ATMOSPHERIC COMPOUNDS Arnaud Cuisset, Laboratoire.
G. Mevi1,2, G. Muscari1, P. P. Bertagnolio1, I. Fiorucci1
Nofal IBRAHIM, Pascale CHELIN, Johannes ORPHAL
Advertisement.
Weston Aenchbacher1, Mira Naftaly2, and Richard Dudley2
“Brief” update on ACE water vapour
d'Opale, F Dunkerque, France,
By Narayan Adhikari Charles Woodman
Calculations and first quantitative laboratory measurements of O2 A-band electric quadrupole line intensities and positions 16O2 b(1) ← X (1) PQ(11) magnetic.
Presentation transcript:

Laser spectroscopic study of ozone in the 100←000 band for the SWIFT instrument M. Guinet, C. Janssen, D. Mondelain, C. Camy-Peyret LPMAA, CNRS- UPMC (France) 18/06/2010

Importance of ozone in terrestrial atmosphere In the stratosphere: UV filter for solar radiation Key role in tropospheric chemistry (OH radical precursor) Green house gas  Studied by a large palette of instruments (UV spectrophotometer, Dobson spectrometer, FTIR…)  1% uncertainty for intensity is required for atmospheric applications (reactive gas!)  Comparison of published data sets → several % inconsistencies for intensities (10 µm bands)

- O 3 : tracer for atmospheric winds (SWIFT instrument) - Stratospheric wind speed (Doppler shift) & ozone concentration measurements - Understand the transport of O 3 in the stratosphere High accuracies required (for the 15 strong 16 O 3 transitions) - Absolute positions:  5  cm -1 (   13 m s -1 ) - Absolute intensities:  1% Other spectroscopic parameters measured:  air,  air,  self SWI Stratospheric Wind Interferometer FT For Transport studies (SWIFT)

A set up at the border of metrology and spectroscopy Laser Diode  / < µm Stabilization principle Stabilized HeNe  / = nm Michelson interferometer

A set up at the border of metrology and spectroscopy Laser Diode  / < Stabilized HeNe  / = Michelson interferometer Stabilization principle Stabilized HeNe  / = nm Laser Diode  / < µm

A set up at the border of metrology and spectroscopy Laser Diode  / < Stabilized HeNe  / = Michelson interferometer Stabilization principle Stabilized HeNe  / = nm Laser Diode  / < µm

A set up at the border of metrology and spectroscopy Laser Diode  / < Stabilized HeNe  / = Michelson interferometer Stabilization principle Stabilized HeNe  / = nm Laser Diode  / < µm

A set up at the border of metrology and spectroscopy Laser Diode  / < Amplitude modulation scheme good S/N (several thousand) Both highly tunable and stabilized system Ultra flexible setup (atmospheric windows accessible) Stabilized HeNe  / = Michelson interferometer Stabilization principle Stabilized HeNe  / = nm Laser Diode  / < µm

Stabilized spectrometer Laser Diode O 3 Generation UV O3O3 N2ON2O (FP)D D C D PT 100 D Laser Diode UV O 3 Generation system Step by step mode Step < cm -1 S/N : 3000 I0I0 FP N2ON2O Accuracy (2  ): Position < cm -1 Intensity < 2% M. Guinet, D. Mondelain, C. Janssen, C. Camy- Peyret, JQSRT, 111, (2010) Interferometer locked onto stabilized HeNe laser

Spectra Linearization Absolute calibration SWIFT Line points

Metrological approach Reduction and taking into account of systematic biases : Sample purity, spectrometer, experimental conditions… Traceability : Following the BIPM recommendation (photometer UV). Calibrated tools (PT 100, micrometer, pressure gauge, stabilized HeNe). Expertise : O 3 sample purity test (> 99.5 % purity sample) : IR spectrometer (CO 2, H 2 O, N 2 O) mass spectrometer (N 2, NO x ) pressure (O 2, N 2, non condensable gases), Stable conditions (temperature, very low ozone decomposition 2- 4 ‰ / hour) Checking : Check BIPM UV recommended cross section (Hearn) with a calibrated pressure gauge. C. Janssen and M. Guinet, RSI., submitted     Hearn A. G., Proc. Phys. Soc., 78 (1961) Mass spectrometer

High accuracy absorption measurement of O 3 cross section at nm International standard (BIPM) : our measures : M. Guinet, C. Camy-Peyret, D. Mondelain and C. Janssen, Refinement of the ozone standard – absolute ozone absorption cross section at the mercury emission line position nm, Metrol., en préparation  =  cm² (± 2.1%)  =  cm² (± 0.7%)

Estimated uncertainties between 0.8 and 1.3% considering: –statistical error over the 11 spectra with pure O 3 –systematic errors (T, offset,  UV, L UV, L IR …) Results on intensities Comparison with HITRAN08: -2.2  1.1(2  ) % (Our UV cross section) -2.6  1.3(2  ) (Mauersberger cross section)

Cross cell : UV and IR measured simultaneously 3.6% inconsistencies between UV (Hearn) and IR (HITRAN 08) recommended values in agreement with Picquet-Varrault Results on intensities Picquet-Varrault et al, J. Phys. Chem A, 109 (2005) UV IR

Absolute positions of strong O 3 lines The N 2 O line positions were accurately measured by an heterodyne experiment (Maki and Wells) Linearization and calibration procedure applied to O 3 and N 2 O spectra N 2 O positions → overall accuracy of 8  cm -1 (2  )  Wind speed uncertainty: ~ 20 m s -1 O 3 positions → Mean difference with HITRAN08: (5  8 (2  ))  cm -1 Maki A.G., Wells J.S. NIST Special publication (1991) 821

Determination of the self pressure broadening Ultra high resolution spectra (200 – 1000 points / line) Voigt and Rautian-Sobel'man (hard) line profile Multi-fit procedure Pressure broadening at 2 % accuracy level (2  ) Agrees with HITRAN by 0.6% with Smith by 1.7% (Voigt profile) HITRAN [cm -1 ] HITRAN [cm -1 atm -1 ] This work [cm -1 atm -1 ] (Voigt) This work - HITRAN [%] This work [cm -1 atm -1 ] (Hard) (15) (17) (8) (7) (11) (12) (6) (6) (15) (15) (9) (8) (11) (11) (12) (12) (8) (9) (12) (9) (8)0.68

Air-pressure broadening coefficients 8 absorption spectra recorded with the crossed UV-IR cell and a 50 m astigmatic cell (O 3 decomposition <1% / hour) Astigmatic cell HITRAN [cm -1 ]  air [cm -1 atm -1 ] n  air (4) (1) (1) (2) (3) (1) (1) (1) (2) (1) (5) (1) (1)

Voigt profile Air Pressure Shift Temperature dependence: Determination of  air and  air at 240 K → n  air and n  air Temperature regulated cell HITRAN [cm -1 ]  air [cm -1 atm -1 ] (This work)  air [cm -1 atm -1 ] (Smith)  ’  10 5 [cm -1 atm -1 K -1 ] (This work)  ’  10 5 [cm -1 atm -1 K -1 ] (Smith) (1) (1) (1) (1) (7)-2.8(10) (1)0.0007(2)0.5(3) (1) (1)1.40.4(2) (1) (2)-0.6(3) (1) (3)0.1(6) (1) (1)0.6(2) (2) (3)-0.4(4) (1) (1)1.7(2) (2)3.3(4) Smith M. A. H., Malati Devi V., Benner D. C., Rinsland C. P., J. Mol. Spectrosc. 182 (1997)

Conclusion 253 nm UV cross section determination Our IR measurement are 2.2 % higher than HITRAN % inconsistencies between UV (Hearn) and IR (HITRAN 08) recommended values Position in agreement with HITRAN 08 Measurement of temperature dependence of air broadening and air shifting.

Laser spectroscopic study of ozone in the 100←000 band for the SWIFT instrument M. Guinet, C. Janssen, D. Mondelain, C. Camy-Peyret LPMAA, CNRS- UPMC (France) 18/06/2010

Jitter of the Laser diode 3.7  cm -1 The line is used like a frequency/amplitude noise converter

SWI Stratospheric Wind Interferometer FT For Transport studies (SWIFT) Stratospheric wind velocity Doppler effect Wave number  Intensity cm m.s -1 Limb view O 3 à 1133,4 cm -l

J. Reid, D. T. Cassidy, and R. T. MenziesLinewidth measurements of tunable diode lasers using heterodyne and etalon techniques November 1982 / Vol. 21, No. 21 / APPLIED OPTICS Exemple of TDL Line Shape : Repeatability of the determination of the laser line shape Set of 32 (on two day) measure in a sealed N 2 O cell The intensity,  lorentz (2  cm -1 ),  gaussian (4  cm -1 ) are fit on the spectrum ± 4%  lorentz Intensity ± 9‰ ParameterSD intensity9‰9‰  lorentz  gaussian 4% 5% Source of biasEffect on the intensity mean value ( ± 1.6 ‰)  lorentz fix to it’s mean value 0.7‰  gaussian fix to it’s mean value 0.3 ‰ 4% on  lorentz 5% on  gaussian 3‰ 1.5‰ We fit the instrument’s apparatus function like a Voigt profile ‰

Stabilized spectrometer Laser Diode UV O 3 Generation system I0I0 FP N2ON2O Accuracy (1  ): Position < cm -1 Intensity < 1%