Presentation is loading. Please wait.

Presentation is loading. Please wait.

Advertisement.

Similar presentations


Presentation on theme: "Advertisement."— Presentation transcript:

1 Advertisement

2

3 PI-12

4 B. V. Perevalov, S. Kassi , and A. Campargue
High sensitivity CW-CRDS spectroscopy of the eight most abundant CO2 isotopologues between 5851 and 7045 cm-1 Critical review of the current databases B. V. Perevalov, S. Kassi , and A. Campargue Laboratoire de Spectrométrie Physique, CNRS Université Joseph Fourier de Grenoble, France V. I. Perevalov , S. A. Tashkun IAO Tomsk, Russia

5 I.- The CW-CRDS spectrometer with DFB lasers in the 1.4-1.7 mm range

6 Cavity Ring Down Sectroscopy
Laser output T OFF time I output ON Ring Down ! (1 à 200 µs) OFF Laser 

7 Cavity Ring Down T T - empty cell - with gaz t t0 Absorption losses
Laser output T Absorption losses time Intensity - empty cell t - with gaz t0

8 Cavity Ring Down T T Laser output Spectrum Wavelength scan Ring down
variation of the Ring down

9 PI-08

10 A compact CW-CRDS spectrometer (S. Kassi, D
A compact CW-CRDS spectrometer (S. Kassi, D. Romanini) nm ( cm-1) 6nm/diode 40 diodes Lambdameter Laser diode n=f(T,I) Optical isolator Coupler -50 50 100 threshold Laser OFF AO Modulator laser ON Photodiode

11 “routine” CW-CRDS (8000) - 7000 - 5850 cm-1 Spectral coverage:
(1250) nm (8000) cm-1 Typical noise level: amin~3×10-10 cm-1 1 % intensity attenuation after 300 km High dynamics: absorption coefficients from 10-5 to 10-9 cm-1 are measured on a single spectrum. Doppler limited resolution Wavenumber accuracy is about cm-1

12 Illustration of the achieved sensitivity:
The example of the a1Δg(0)−X3Sg(1) of O2 k=8×10-31cm/molec =2×10-11cm 1 % absorbance after 5000 km Chem. Phys. Lett. 409 (2005) 281–287

13 the third dimension of an absorption spectrum
Sensitivity: the third dimension of an absorption spectrum

14 636 HITRAN

15 636

16 636

17

18 II. Line intensity measurements:

19 636

20 636 PI-O6

21 III. Rovibrational analysis
About 10 lines observed/cm-1: Hot bands up to Elow=3004 cm-1 relative concentration of 5×10-7 Minor isotopologues 828: 3.9×10-6 Impurities (the cell has a good memory!!)

22 Natural isotopic abundance of CO2 molecule
626 636 628 627 638 637 828

23 typical rms values of the residuals ~ 1x10-3 cm-1
band-by-band analysis of 121 and 117 bands for 12C and 13C isotopologues respectively typical rms values of the residuals ~ 1x10-3 cm-1

24 Effective Hamiltonian Model
S. A. Tashkun, V. I. Perevalov, J. –L. Teffo 1388 cm-1 667 cm-1 2349 cm-1 } Our spectral region corresponds to DP= 9 We observe transitions reaching P=10-13 polyads with Eup up to 9900 cm-1

25 Excellent agreement with CDSD
However, significant deviations new fit of the EH parameters 626: JMS 230 (2005) 1–21 636: JMS 226 (2004) 146–160 637 and 638: JMS 241 (2007) 90–100 rms=4.2 ×10-3 cm-1 Intrapolyad interactions are accurately predicted and reproduced by the EH model rms=2.7 ×10-3 cm-1

26 Newly evidenced interpolyad anharmonic interaction:
in 638 (2 occurences), 637 (1) and 628 (1) Example: 638: (P=10) ↔51106 (P= 11)

27 628 626

28 IV. Comparison with the current CO2 databases

29 626 bands lines 4x10-27 28 1903 1x10-26 18 816 4x10-30 50 6210 3x10-29 94 5604 CDSD (4x10-30) 164 13225

30 pure 636 4x10-25 1x10-25 4x10-28 3x10-29 bands lines 8 774 8 259 18
1694 3x10-29 104 4881

31 Line positions comparison 626 HITRAN-CRDS GEISA-CRDS HITEMP-CRDS

32 626 JPL-CRDS JPL-CDSD CDSD-CRDS

33 628 JPL-CRDS JPL-CDSD CDSD-CRDS

34 636 JPL-CRDS

35 626 Line intensities comparison

36 pure 636

37 V. Conclusion The 12CO2 and 13CO2 spectra wer recorded in the 5841–7045 cm-1 region with a typical sensitivity of 3×10-10 cm-1. The dynamic on the line intensities is from to 3x10-29 cm/molecule. 16932 lines were assigned to 280 bands of 8 isotopologues of CO2. Our data have allowed a significant improvement of the EHs and EDMs of CDSD

38 Present HITRAN Advantages Drawbacks Complete above 4x10-27
Not sensitive Deviations<0.02 cm-1

39 Present HITRAN JPL Advantages Drawbacks Complete above 4x10-27
Not sensitive Deviations<0.02 cm-1 JPL Very accurate observations for the strongest bands Pressure shifts and self and air broadening coefficients Incomplete Too long range extrapolation (4x10-30) Some very large deviations Traceability

40 Present HITRAN JPL CRDS Advantages Drawbacks Complete above 4x10-27
Not sensitive Deviations<0.02 cm-1 JPL Very accurate observations for the strongest bands Pressure shifts and self and air broadening coefficients Incomplete Too long range extrapolation (4x10-30) Some very large deviations Traceability CRDS Nearly complete above 5x10-29 Typical accuracy 1x10-3 cm-1 (1250) nm (8000) cm-1

41 Present HITRAN JPL CRDS CDSD Advantages Drawbacks
Complete above 4x10-27 Not sensitive Deviations<0.02 cm-1 JPL Very accurate observations for the strongest bands Pressure shifts and self and air broadening coefficients Incomplete Too long range extrapolation (4x10-30) Some very large deviations Traceability CRDS Nearly complete above 5x10-29 Typical accuracy 1x10-3 cm-1 (1250) nm (8000) cm-1 CDSD Complete (at least for 626, 636 and 628) Excellent predictive abilities for positions and intensities Interpolyad coupling Cannot reproduce JPL accuracy A factor of 2 worse than the CRDS accuracy for line centers of the weak bands

42 CH4 (PI-12) N2O 16O3 (III-4), 18O3 (PI-8) C2H2 NO2
Our CW-CRDS spectrometer has allowed similar investigations for: H2O, H218O, HDO CH4 (PI-12) N2O 16O3 (III-4), 18O3 (PI-8) C2H2 NO2

43 Merci

44 12CO2 HITRAN JPL database CRDS Bands Lines 626 28 1903 50(18)
6210(816) 94 5604 628 7 467 15(3) 2713(179) 25 1922 627 3 159 6 1017 11 767 Total 38 2529 71(21) 9940(995) 130 8293

45 13CO2 HITRAN JPL database This work Bands Lines 636 8 774 18 (8)
1694 (259) 104 4881 638 4 (1) 446 (55) 28 2466 637 2 (0) 184 (0) 11 992 838 0 (0) 4 170 738 3 130 Total 24 (9) 2324 (314) 150 8639


Download ppt "Advertisement."

Similar presentations


Ads by Google