Sterilization 4-H Veterinary Science Extension Veterinary Medicine Texas AgriLife Extension Service College of Veterinary Medicine and Biomedical Science.

Slides:



Advertisements
Similar presentations
Aseptic Technique: Media and Equipment
Advertisements

Using Disinfectants and practicing Sterilization in the Veterinary Clinic.
1 Clean? Disinfect? Sterilize? What does it all mean?? DA 116 Infection Control.
Control of Microbial Growth
ISE789 End of Semester Review. Course Projects They are being graded. You can stop by my office on Monday to pick them up.
3.03 Understand support services
Clean? Disinfect? Sterilize? What does it all mean??
Control of Microbial Growth Chapter Approaches to Control Physical methods Heat Irradiation Filtration Mechanical (e.g., washing) Chemical methods.
DENT 1260 IC Unit 5 Unit 5 Sterilization 1. 3 methods of HEAT Sterilization Autoclave- steam under pressure Chemclave- chemical heated under pressure.
Sterilizing Techniques 4-H Veterinary Science Extension Veterinary Medicine Texas AgriLife Extension Service College of Veterinary Medicine and Biomedical.
Aseptic Techniques. Cross infection: The transmittal of an infection from one patient i n a hospital or health care setting to another p patient with.
ASEPTIC & ANTISEPIC TECHNIQUES Begashaw M (MD). DEFINITIONS  Aseptic technique: prevention of microbial contamination of tissues & sterile materials.
Instrument Processing DA 116 Infection Control
Instrument Processing DA 116 Infection Control. Instrument Contamination Levels: 1. _______________ 2. _____________________ 3. _____________________.
What is the autoclave thing again. Sanitization: fancy word for Cleaning Removing of foreign material Dirt, body fluids, lubricants Using detergents,
Disinfection and Sterilisation Procedures Sr.Panchavarnam.
Sterilization and disinfections By: Microbiology members
Asepsis. Asepsis- all living organisms removed or eliminated important to prevent contamination and infection.
Sterilization Methods
Microbiology: Principles and Explorations Sixth Edition Chapter 12: Sterilization and Disinfection Copyright © 2005 by John Wiley & Sons, Inc. Jacquelyn.
Disinfection and Sterilization.
Physical and Chemical Control of Microorganisms
Sterilization and Disinfection. Antisepsis. Antiseptic agents and fabrics. Vinnitsa National Pirogov Memorial Medical University/ Department of microbiology.
Autoclave. What is an Autoclave? Autoclave is a pressurized device designed to heat aqueous solutions above their boiling point at normal atmospheric.
8.02 Aseptic Techniques Implement aseptic technique to maintain equipment Images courtesy of google images.
Definition Sterilization: The freeing of an article from all living organisms including bacteria and their spores. Disinfection: Removal of some types.
Sanitation Vet Tech.
DECONTAMINATION AND INFECTION CONTROL
Aseptic Technique: Media and Equipment. Growth Medium A growth medium or culture medium is a liquid or gel designed to support the growth of microorganisms.
Decontamination Steps I. Heat 1- Moist heat or steam sterilization 2- Dry heat sterilization II. Low temperature (cold): 1. chemical a. ethylene oxide.
Sterilization and Disinfection
Sterilization & Disinfection Physical Agents Hugh B. Fackrell PhysSter.ppt.
1 Infection Prevention (IP). 2 IP: Objectives To prevent major postoperative infections when providing surgical contraceptive methods To prevent major.
Sterilizers.  Definition of sterile  Free of microorganisms (bacteria) Bacteria  Bacteria can be broken down into two groups  Pathogenic - cause disease.
Sterilization of Medical Devices: Bodhisatwa Das.
ASEPSIS IN HEALTHCARE. ASEPSIS Absence of disease-producing microorganisms or pathogens.
SANITATION PART 2. TYPES OF SANITATION Cleaning – physically removing all visible signs of dirt and organic matter such as feces, blood, hair, ect. Disinfecting.
Sterilization and Disinfections. Sterilization Freeing of an environment from all living microorganisms includes bacteria and their spores, fungi, parasites.
The Control of Microbial Growth
Chemical Sterilization
CONTROL OF MICROORGANISMS 1. TOPICS  Sterilization & Disinfection.  Antimicrobial definitions.  Factors influence the effectiveness of antimicrobial.
Laboratory safety rules Dalia Kamal Eldien Mohammed Practical NO (1)
ASEPTIC TECHNIQUE IN HEALTHCARE. MICROBIAL GROWTH FOLLOWING FACTORS INFLUENCE MICROBIAL GROWTH: TEMPERATURE PH, OR THE VALUES USED IN CHEMISTRY TO EXPRESS.
Preparation of Supplies for Sterilization. Objectives Explain the steps involved in cleaning, disinfecting, wrapping, and packaging sterile packs and.
STRILIZATION AND DISINFECTION IN A DENTAL CLINIC
Disinfection and sterilization
CHAPTER 4 Infection Prevention 4-2 Introduction Infection prevention terminology is required for understanding microbiology in practice ─Infection prevention.
 * Sterilization: Complete destruction of all transmission m.o (bacteria,virus) * Disinfection: remove only organisms that cause disease.
Sterilization Lab 3 Abeer Saati.
Working safely with Biological materials Aseptic technique, sterilization and tissue culture techniques.
Death / Killing loss of ability of microorganism to multiply under any knownconditions.
Pearson's Comprehensive Medical Assisting Administrative and Clinical Competencies CHAPTER Pearson's Comprehensive Medical Assisting: Administrative and.
Disinfection & Sterilization Dr : Dina Ramadan Microbiologist In Central Health Laboratory Ministry of Health Cairo-Egypt Quality Manager.
Agricultural microbiology course
Sterilization Department of Surgery & Obstetrics
3.03 Understand support services
PRESENTATION ON STERILIZATION
CENTRAL STERILE SUPPLY SERVICE
Practical Medical Bacteriology
Sterilization Methods CTVT pages
Microbiology &Immunology Course Associate Professor of Microbiology
3.03 Understand support services
Infection Control Lesson 3: Surgical Asepsis
Control of Microorganisms by Physical and Chemical Agents
3.03 Understand support services
Sterilization September 2018.
3.03 Understand support services
CHAPTER 4 Infection Prevention.
Presented by: 1) Samar Magdy Mahmud 2) Sandy Haitham Roman
Sterile Technique.
Presentation transcript:

Sterilization 4-H Veterinary Science Extension Veterinary Medicine Texas AgriLife Extension Service College of Veterinary Medicine and Biomedical Science Texas A&M System

Objectives Understand and utilize correct sterilization and disinfection techniques Distinguish between sterilization and disinfection List the characteristics of an ideal antiseptic Describe sterilizing agents and rank their effectiveness Discuss the time/temperature relationship in destroying microorganisms

Microorganisms Invisible Cause infections Sterilization Destruction of all microorganisms Disinfectant Destruction of harmful organisms, or pathogens on nonliving objects

Disinfectants Types of disinfectants Bactericides Fungicides Germicides Virucides All prevent transfer of infection

Sterilization Antiseptics Prevent growth of microorganisms without destroying them Not harmful to patients Characteristics Active against pathogens Non-irritating Cleansing Cost-effective Long shelf life Safe for patient and handler Stable in the presence of organic matter

Sterilizing Agents Type of agents Chemical Physical Moist heat Dry heat Most clinics use physical agents

Steps for Chemical Sterilization Step 1 Decontaminate, clean, and thoroughly dry all instruments and other items to be sterilized. Water from wet items will dilute the chemical solution, thereby reducing its effectiveness. Step 2 Prepare the glutaraldehyde-containing solution (or other chemical solution) by following the manufacturer's instructions--or use a solution that was prepared previously, as long as it is clear (not cloudy) and has not expired. After preparing the solution, put it in a clean container with a lid. Always mark the container with the date the solution was prepared and the date it expires. Step 3 Open all hinged instruments and other items and disassemble those with sliding or multiple parts. The solution must contact all surfaces in order for sterilization to be achieved. Completely submerge all instruments and other items in the solution. All parts of the items should be under the surface of the solution. Place any bowls and containers upright, not upside-down, and fill with the solution. Step 4 Follow the manufacturer's instructions regarding the time necessary for sterilization to be achieved. In general, if the solution contains glutaraldehyde, cover the container and allow the instruments and other items to soak for at least hours. (Times vary for different products. Follow the manufacturer's instructions.) Do not add or remove any items to the solution once timing has begun. Step 5 Remove the items from the solution using large, sterile pickups. Step 6 Rinse thoroughly with sterile water to remove the residue that chemical sterilants leave on items. This residue is toxic to the skin and tissues. Step 7 Store items properly. Proper storage is as important as the sterilization process itself. Place the items on a sterile tray or in a sterile container and allow to air-dry before use or storage. Use the items immediately or keep them in a covered, dry, sterile container and use within one week. From

Moist heat Steam and boiling water Alone not effective Captured steam effective Autoclave Sealed chamber that furnished both hear and pressurized steam for sterilization Inexpensive Sterilizes  Instruments  Syringes  Needles  Other materials

Dry heat Slow sterilizer Higher temperatures Penetrates Oil-based materials Closed containers

Steps of Dry-Heat Sterilization Step 1 Decontaminate, clean, and dry all instruments and other items to be sterilized. Step 2 Either 1) wrap the instruments and other items using foil, double-layered cotton, or muslin fabric; 2) put unwrapped instruments and other items on a tray or shelf; or 3) place instruments and other items in a metal, lidded container. Note: Because dry-heat sterilization works by raising the temperature of the entire item to the designated temperature, it is not necessary to open or unlock hinged instruments or other items or to disassemble those with sliding or multiple parts. In addition, instruments and other items can be placed in closed containers. Step 3 Place instruments and other items in the oven, and heat to the designated temperature. The oven must have a thermometer or temperature gauge to make sure the designated temperature is reached. Use the list here to determine the appropriate amount of time to sterilize instruments and other items for different temperatures. (do not begin timing until the oven reaches the desired temperature, and do not open the oven door or add or remove any items). The times shown here represent the amount of time that items must be kept at the desired temperature to ensure that sterilization is achieved. Keep in mind that the total cycle time-- including heating the oven to the correct temperature, sterilization, and cooling--is usually twice as long as the time noted here. Temperature 170 degrees C (340 degrees F) - 1 hour 160 degrees C (320 degrees F) - 2 hours 150 degrees C (300 degrees F) hours 140 degrees C (285 degrees F) - 3 hours Note: Because dry heat can dull sharp instruments and needles, these items should not be sterilized at temperatures higher than 160 degrees C. Step 4 Leave items in the oven to cool before removing. When they are cool, remove items using sterile pickups and use or store immediately. Step 5 Store items properly. Proper storage is as important as the sterilization process itself: Wrapped items. Under optimal storage conditions and with minimal handling, properly wrapped items can be considered sterile as long as they remain intact and dry. For optimal storage, place sterile packs in closed cabinets in areas that are not heavily trafficked, have moderate temperature, and are dry or of low humidity. When in doubt about the sterility of a pack, consider it contaminated and re-sterilize it. Unwrapped items. Use unwrapped items immediately after removal from the autoclave or keep them in a covered, sterile container for up to one week.

Direct flame Can damage the exposed object

Time/Temperature Relationship Most important factor in destroying microorganisms is length of exposure to heat Varies with microorganisms The higher the temp the faster it will kill microorganisms exposed Temps lower than boiling point can sterilize some medications and milk

Other Sterilization Technology Filtration Ultraviolet irradiation Cold sterilization Ethylene oxide

Filtration Complete removal of microorganisms and particles of a certain size from liquid or gas Used by vet personnel in producing sterile and particle-free fluids, such as intravenous fluids

Ultraviolet irradiation Destroys microorganisms in air, liquid, and surface Germicidal UV radiation is generated by passing electricity through mercury vapor in special glass tubes UV lamps sterilize most effectively in still air at room temperature

Cold sterilization Gamma radiation Kill microorganisms without a rise in temperature Highly successful in sterilizing Syringes Stitching (sutures) materials Containers

Ethylene oxide Makes possible the use of low cost, plastic materials for sterile, disposable medical instruments Primary gas used in hospitals and clinics to sterilize items that cannot withstand steam sterilization Vapors are hazardous to people