LEPP, the Cornell University Laboratory for Elementary-Particle Physics, has joined with CHESS to become the Cornell Laboratory for Accelerator-based Sciences.

Slides:



Advertisements
Similar presentations
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences.
Advertisements

Using Tune Shifts to Evaluate Electron Cloud Effects on Beam Dynamics at CesrTA Jennifer Chu Mentors: Dr. David Kreinick and Dr. Gerry Dugan 8/11/2011REU.
CESR Synchrotron Radiation Tables - Range of Photon Rates and Beta-averaged Photon Rates - Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences.
Comparison of ECLOUD and POSINST Calculations of Coherent Tune Shifts with Emphasis on the Relative Drift and Dipole Contributions Jim Crittenden Cornell.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Jim Crittenden & John Sikora Cornell Laboratory for Accelerator-Based.
ECLOUD Calculations of Field Gradients During Bunch Passage Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences and Education Electron Cloud.
LEPP, the Cornell University Laboratory for Elementary-Particle Physics, has joined with CHESS to become the Cornell Laboratory for Accelerator-based Sciences.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Resolution of ECLOUD Tune Shift Calculation Instability Jim Crittenden.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Modelling Cyclotron Resonances in ECLOUD 1) Comparison with CesrTA.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York ECLOUD Simulations for the Tune Shift Measurements of December.
ECLOUD Calculations of Coherent Tune Shifts for the April 2007 Measurements - Study of SEY Model Effects - Jim Crittenden Cornell Laboratory for Accelerator-Based.
ECLOUD Calculations of Coherent Tune Shifts for the April 2007 Measurements - Study of SEY Model Effects - Jim Crittenden Cornell Laboratory for Accelerator-Based.
Global design effort 2008 DOE/NSF review June 30, 2008 Global design effort Americas Slide 1 CesrTA Status and Planning for FY08-09 David Rubin Mark Palmer.
ECLOUD Calculations of Coherent Tune Shifts for the April 2007 and January 2009 Measurements - Preparation for PAC2009 FR5RF Paper and Poster - “Effects.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Preliminary Results on the Introduction of the Rediffused SEY Component.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Modeling Cyclotron Resonances in ECLOUD Jim Crittenden Cornell Laboratory.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Comparison of ECLOUD Calculations in Dipole and Quadrupole Fields.
ECLOUD Calculations of Coherent Tune Shifts for the April 2007 Measurements - This presentation limited to resolving drift/dipole weighting question -
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Recent Studies with ECLOUD Jim Crittenden Cornell Laboratory for.
ElectronsdFud Simulation Work at Cornell Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences and Education.
Space Charge Electric-Field Calculations for Coherent Tune Shift Estimations using the Electron-cloud Modelling Algorithm ECLOUD Jim Crittenden Cornell.
ECLOUD Calculations of Coherent Tune Shifts for the April 2007 Measurements - Thanks to Marco for clarifying the drift/dipole weighting - - Thanks to Gerry.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Electron Cloud Simulation Studies for CesrTA Jim Crittenden Cornell.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York ECLOUD Simulations for the Tune Shift Measurements of December.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Comparison of ECLOUD Calculations in Dipole and Quadrupole Fields.
ECLOUD Simulations for CESR Witness Bunch Tune Shift Measurements Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences and Education.
CESR Synchrotron Radiation Tables and Electron Cloud Modelling Input Parameters Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences and Education.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York First Results on the Introduction of the Rediffused SEY Component.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York CesrTA Electron Cloud Measurements and Simulations Jim Crittenden.
49th ICFA Advanced Beam Dynamics Workshop October 8 –12, 2010 LEPP, the Cornell University Laboratory for Elementary-Particle Physics, has joined with.
Project Management Mark Palmer Cornell Laboratory for Accelerator-Based Sciences and Education.
CesrTA Experimental Plan M. Palmer for the CesrTA Collaboration November 17, 2008.
March 23, 2010 CMAD a tracking and e-cloud beam instability parallel code (M.Pivi SLAC) Taking MAD(X) optics file at input, thus tracking the beam in a.
CesrTA EC Build-Up and Mitigation Program - Introduction Mark Palmer June 25, 2009.
CesrTA Status Report & R&D Planning Mark Palmer Cornell University April 21, 2010.
Cesr-TA Simulations: Overview and Status G. Dugan, Cornell University LCWS-08.
Nov 17, 2009 Webex Assessing the 3.2 km Ring feasibility: Simulation parameters for electron cloud Build-up and Instability estimation LC DR Electron Cloud.
Electron cloud measurements and simulations at CesrTA G. Dugan, Cornell University 4/19/09 TILC09 4/18/09.
November 18, 2011David L. Rubin1 CESR Test Accelerator – Investigation of the physics of charged particle beams Circumference = 768m - Beam energy
CesrTA Vacuum System Conversion and Operational Experiences Yulin Li for the CesrTA Team Cornell Laboratory for Accelerator-based ScienceS and Education.
CesrTA Electron cloud simulation update ILC 10 Workshop G. Dugan, Cornell 3/28/09 2/24/2016ILC 10 Workshop.
2nd International Particle Accelerator Conference September 4–9, 2011, San Sebastián, Spain LEPP, the Cornell University Laboratory for Elementary-Particle.
3 February 2010 ILC Damping Ring electron cloud WG effort Mauro Pivi SLAC on behalf of ILC DR working group on e- cloud ILC DR Webex Meeting Jan 3, 2010.
Electron Cloud Experimental Plans at Cesr-TA ILCDR08 - July 10, 2009 G. Dugan Cornell Laboratory for Accelerator-Based Sciences and Education.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Jim Crittenden & John Sikora Cornell Laboratory for Accelerator-Based.
45 th ICFA Beam Dynamic Workshop June 8–12, 2009, Cornell University, Ithaca New York Jim Crittenden Cornell Laboratory for Accelerator-Based Sciences.
49th ICFA Advanced Beam Dynamics Workshop. October 8–12, 2010 LEPP, the Cornell University Laboratory for Elementary-Particle Physics, has joined with.
LEPP, the Cornell University Laboratory for Elementary-Particle Physics, has joined with CHESS to become the Cornell Laboratory for Accelerator-based Sciences.
LEPP, the Cornell University Laboratory for Elementary-Particle Physics, has joined with CHESS to become the Cornell Laboratory for Accelerator-based Sciences.
Update to ECLOUD Calculations for the
Electron Cloud Effects in SuperB
Electron Cloud R&D at Cornell ILCDR08--7/8/08
CesrTA Status Report Mark Palmer July 8, 2009.
Physics Scope and Work Plan for the Shielded-Pickup Measurements -- Synchrotron Radiation Photon Distributions Photoelectron Production Parameters.
Detailed Characterization of Vacuum Chamber Surface Properties Using Measurements of the Time Dependence of Electron Cloud Development Jim Crittenden.
RECENT DEVELOPMENTS IN MODELING
Physics Scope and Work Plan for the Shielded-Pickup Measurements -- Synchrotron Radiation Photon Distributions Photoelectron Production Parameters.
Electron Cloud Meeting
Why Study Electron Clouds? Methods and Tools to Study Electron Clouds
J.A.Crittenden, Y.Li, X.Liu, M.A.Palmer, J.P.Sikora (Cornell)
CESRTA Measurement of Electron Cloud Density by TE Wave and RFA
Electron Cloud in ilcDR: Update
SuperB General Meeting June , Perugia (Italy)
Code Benchmarking and Preliminary RFA Modelling for CesrTA
CesrTA Experimental Schedule and Priorities
ILC Damping Ring electron cloud WG effort
CTA 09 - Introduction David Rubin Cornell Laboratory for
Presentation transcript:

LEPP, the Cornell University Laboratory for Elementary-Particle Physics, has joined with CHESS to become the Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE). LEPP's primary source of support is the National Science Foundation. Visit us on the web at: Studies of the Effects of Electron Cloud Formation on Beam Dynamics at CesrTA J.A.Crittenden, J.R.Calvey, G.Dugan, D.L.Kreinick, J.A.Livezy, M.A.Palmer, D.L.Rubin (Cornell), K.Harkay (ANL), R.L.Holtzapple (Cal Poly), K.Ohmi (KEK), M.A.Furman, G.Penn, M.Venturini (LBNL), M.T.F.Pivi and L.Wang (SLAC) The Cornell Electron Storage Ring Test Accelerator (CesrTA) has commenced operation as a linear collider damping ring test bed following its conversion from an e + e - -collider in A core component of the research program is the measurement of effects of synchrotron-radiation-induced electron cloud formation on beam dynamics. We have studied the interaction of the beam with the cloud in various bunch train configurations, bunch currents, beam energies, and bunch lengths, for both e + and e - beams. This paper compares a subset of these measurements to modeling results from the two-dimensional cloud simulation packages ECLOUD and POSINST. These codes each model most of the tune shift measurements with remarkable accuracy, while some comparisons merit further investigation. Yield curve for true secondaries for peak yield 2.0 and peak energy 310 eV ECLOUD: simulated SEY yield population including elastics in the case of a drift volume for the April 2007 input parameters Electron Cloud Buildup 10 filled bunches and bunch 20 filled as witness bunch Bunch spacing 14 ns RMS bunch length 13 mm Magnetic Dipole RegionDrift Region Snapshots of Cloud Profiles prior to passage of bunch 9 Magnetic Dipole Region The CESR Tunnel under the Cornell Campus The CesrTA Reconfiguration July – October 2008 I.ECLOUD and POSINST cloud simulation input parameters 1.Sync rad photon rate per meter per beam particle at primary source point (2007: Drift R=0.23 g/m/e, Dipole R=0.53 g/m/e) 2.Quantum efficiency for producing photo-electrons on the vacuum chamber wall (12%) 3.Beam particles per bunch (0.75 mA/bunch -> 1.2e10 e/bunch). 4.Contribution of reflected sync rad photons distributed uniformly in azimuth around the beampipe wall (15%). This contribution is also subtracted from the primary source point. 5.Secondary emission peak yield (SEY=2.0) at peak energy (E peak = 310 eV) ● These values are also used by POSINST, but the POSINST SEY model is quite different from ECLOUD's. II. Field difference or gradient --> tune shift conversion parameters 1.E beam = 1.885e9 eV 2.f rev = 390 kHz 3.Ring circumference C=768 m (C f rev = c = 2.998e8 m/s) 4. Ring-averaged b values (from sync rad summary tables derived from lattice model) ● e+ beam: Drift b X (b Y ) = 19.6m (18.8m), Dipole b X (b Y ) = 15.4m (18.8m) ● e- beam: Drift b X (b Y ) = 19.4m (19.3m), Dipole b X (b Y ) = 15.3m (19.4m) III. Relative drift/dipole weighting (from sync rad summary tables) 1.Ring length fractions: Drift: (174.9m/768m) = 0.228, Dipole: (473.9m/768m) = Remaining 15% of ring ignored. Modeling Coherent Tune Shift Measurements Using ECLOUD and POSINST Cloud Simulation Packages April GeV 0.75 mA/bunch e+ and e- beams L3 Electron cloud experimental region PEP-II EC Hardware: Chicane, upgraded SEY station (commissioning in May 2009) Drift and Quadrupole diagnostic chambers L0 region reconfigured as a wiggler straight CLEO detector sub-systems removed 6 wigglers moved from CESR arcs to zero dispersion straight Region instrumented with EC diagnostics and mitigation Wiggler chambers with retarding field analyzers and various electron cloud mitigation methods (fabricated at LBNL in CU/SLAC/KEK/LBNL collaboration) New electron cloud experimental regions in arcs near L1 and L5 (after 6 wigglers moved to L0 straight) Locations for collaborator experimental vacuum chambers CESR superconducting wiggler June GeV 0.75 mA/bunch e+ beam January GeV 0.75 mA/bunch e+ beam