Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 51 Lecture 5 Fault Modeling n Why model faults? n Some real defects in VLSI and PCB n Common fault.

Slides:



Advertisements
Similar presentations
IC TESTING.
Advertisements

Chapter 3 Fault Modeling
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 31/22alt1 Lecture 31 System Test (Lecture 22alt in the Alternative Sequence) n Definition n Functional.
Apr. 20, 2001VLSI Test: Bushnell-Agrawal/Lecture 311 Lecture 31 System Test n Definition n Functional test n Diagnostic test  Fault dictionary  Diagnostic.
Fault Equivalence Number of fault sites in a Boolean gate circuit is = #PI + #gates + # (fanout branches) Fault equivalence: Two faults f1.
CMP238: Projeto e Teste de Sistemas VLSI Marcelo Lubaszewski Aula 2 - Teste PPGC - UFRGS 2005/I.
March 23, 2001VLSI Test: Bushnell-Agrawal/Lecture 211 Lecture 21 I DDQ Current Testing n Definition n Faults detected by I DDQ tests n Vector generation.
9. Fault Modeling Reliable System Design 2011 by: Amir M. Rahmani.
Copyright 2001, Agrawal & BushnellDay-1 AM-3 Lecture 31 Testing Analog & Digital Products Lecture 3: Fault Modeling n Why model faults? n Some real defects.
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 71 Lecture 7 Fault Simulation n Problem and motivation n Fault simulation algorithms n Serial n Parallel.
Copyright 2005, Agrawal & BushnellVLSI Test: Lecture 19alt1 Lecture 19alt I DDQ Testing (Alternative for Lectures 21 and 22) n Definition n Faults detected.
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 211 Lecture 21 I DDQ Current Testing n Definition n Faults detected by I DDQ tests n Vector generation.
Copyright 2001, Agrawal & BushnellDay-1 PM Lecture 4a1 Design for Testability Theory and Practice Lecture 4a: Simulation n What is simulation? n Design.
Copyright 2001, Agrawal & BushnellDay-1 PM Lecture 4b1 Design for Testability Theory and Practice Lecture 4b: Fault Simulation n Problem and motivation.
Modern VLSI Design 2e: Chapter 4 Copyright  1998 Prentice Hall PTR Topics n Switch networks. n Combinational testing.
Dominance Fault Collapsing - Alok Doshi ELEC 7250 Spring 2004.
COE 571 Digital System Testing An Introduction Dr. Aiman H. El-Maleh Computer Engineering Department King Fahd University of Petroleum & Minerals Dr. Aiman.
Test de Circuitos Integrados
Copyright 2001, Agrawal & BushnellDay-1 PM Lecture 61 Design for Testability Theory and Practice Lecture 6: Combinational ATPG n ATPG problem n Example.
Lecture 5 Fault Simulation
Spring 08, Mar 13 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2008 VLSI Test Principles Vishwani D. Agrawal James.
Lecture 5 Fault Modeling
Copyright 2001, Agrawal & BushnellDay-2 PM Lecture 121 Design for Testability Theory and Practice Lecture 12: System Diagnosis n Definition n Functional.
EE141 Chapter 1 Introduction.
1 Introduction VLSI Testing. 2 Overview First digital products (mid 1940's) Complexity:low MTTF:hours Cost:high Present day products (mid 1980's) Complexity:high.
Spring 08, Mar 27 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2008 Fault Simulation Vishwani D. Agrawal James J.
Dominance Fault Collapsing of Combinational Circuits By Kalpesh Shetye & Kapil Gore ELEC 7250, Spring 2004.
ELEN 468 Lecture 231 ELEN 468 Advanced Logic Design Lecture 23 Testing.
EE 587 SoC Design & Test Partha Pande School of EECS Washington State University
5/24/2016 Based on text by S. Mourad "Priciples of Electronic Systems" Digital Testing: Defects, Failures and Faults.
Copyright 2001, Agrawal & BushnellLecture 1 Introduction1 VLSI Testing Dr. Vishwani D. Agrawal James J. Danaher Professor of Electrical and Computer Engineering.
ECE 553: TESTING AND TESTABLE DESIGN OF DIGITAL SYSTES Fault Modeling.
VLSI Testing Lecture 7: Combinational ATPG
Modern VLSI Design 4e: Chapter 4 Copyright  2008 Wayne Wolf Topics n Switch networks. n Combinational testing.
Modern VLSI Design 3e: Chapter 5,6 Copyright  2002 Prentice Hall PTR Adapted by Yunsi Fei Topics n Sequential machine (§5.2, §5.3) n FSM construction.
Unit I Testing and Fault Modelling
Testing of Digital Systems: An Introduction Dr. Aiman H. El-Maleh Computer Engineering Department King Fahd University of Petroleum & Minerals Dr. Aiman.
1 EE 587 SoC Design & Test Partha Pande School of EECS Washington State University
Page 1EL/CCUT T.-C. Huang Mar TCH CCUT Introduction to IC Test Tsung-Chu Huang ( 黃宗柱 ) Department of Electronic Eng. Chong Chou Institute of Tech.
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 41 Lecture 4 Yield Analysis & Product Quality n Yield and manufacturing cost n Clustered defect yield.
Fault Models, Fault Simulation and Test Generation Vishwani D. Agrawal Department of ECE, Auburn University Auburn, AL 36849, USA
TOPIC : Different levels of Fault model UNIT 2 : Fault Modeling Module 2.1 Modeling Physical fault to logical fault.
EE434 ASIC & Digital Systems Partha Pande School of EECS Washington State University
Fault modeling is the translation of physical defects into a mathematical construct that can be operated upon algorithmically and.
Copyright 2001, Agrawal & BushnellLecture 6: Sequential ATPG1 VLSI Testing Lecture 6: Sequential ATPG n Problem of sequential circuit ATPG n Time-frame.
An introduction to Fault Detection in Logic Circuits By Dr. Amin Danial Asham.
Jan. 26, 2001VLSI Test: Bushnell-Agrawal/Lecture 51 Lecture 5 Fault Modeling n Why model faults? n Some real defects in VLSI and PCB n Common fault models.
TOPIC : Introduction to Faults UNIT 2: Modeling and Simulation Module 1 : Logical faults due to physical faults.
Copyright 2001, Agrawal & BushnellLecture 6:Fault Simulation1 VLSI Testing Lecture 6: Fault Simulation Dr. Vishwani D. Agrawal James J. Danaher Professor.
TOPIC : Introduction to Faults UNIT 2: Modeling and Simulation Module 1 : Logical faults due to physical faults.
VLSI Testing Class Fault Modeling 李昆忠 Kuen-Jong Lee Dept. of Electrical Engineering National Cheng-Kung University Tainan, Taiwan.
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 51 Lecture 5 Fault Modeling n Why model faults? n Some real defects in VLSI and PCB n Common fault.
Fault Models, Fault Simulation and Test Generation Vishwani D. Agrawal Department of ECE, Auburn University Auburn, AL 36849, USA
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 61 Lecture 6 Logic Simulation n What is simulation? n Design verification n Circuit modeling n True-value.
VLSI Testing Lecture 14: System Diagnosis
VLSI Testing Lecture 5: Logic Simulation
VLSI Testing Lecture 6: Fault Simulation
VLSI Testing engr. uconn. edu/~tehrani/teaching/test/index
VLSI Testing Lecture 6: Fault Simulation
VLSI Testing Lecture 7: Combinational ATPG
VLSI Testing Lecture 15: System Diagnosis
ELEC Digital Logic Circuits Fall 2014 Logic Testing (Chapter 12)
Lecture 5 Fault Modeling
VLSI Testing Lecture 7: Combinational ATPG
Topics Switch networks. Combinational testing..
VLSI Testing Lecture 3: Fault Modeling
ELEC Digital Logic Circuits Fall 2015 Logic Testing (Chapter 12)
Manufacturing Testing
Agenda Lecture Content: Combinatorial Circuits Boolean Algebras
Presentation transcript:

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 51 Lecture 5 Fault Modeling n Why model faults? n Some real defects in VLSI and PCB n Common fault models n Stuck-at faults n Single stuck-at faults n Fault equivalence n Fault dominance and checkpoint theorem n Classes of stuck-at faults and multiple faults n Transistor faults n Summary n Review exercise

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 52 Why Model Faults? n I/O function tests inadequate for manufacturing (functionality versus component and interconnect testing) n Real defects (often mechanical) too numerous and often not analyzable n A fault model identifies targets for testing n A fault model makes analysis possible n Effectiveness measurable by experiments

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 53 Some Real Defects in Chips  Processing defects  Missing contact windows  Parasitic transistors  Oxide breakdown ...  Material defects  Bulk defects (cracks, crystal imperfections)  Surface impurities (ion migration) ...  Time-dependent failures  Dielectric breakdown  Electromigration ...  Packaging failures  Contact degradation  Seal leaks ... Ref.: M. J. Howes and D. V. Morgan, Reliability and Degradation - Semiconductor Devices and Circuits, Wiley, 1981.

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 54 Observed PCB Defects Defect classes Shorts Opens Missing components Wrong components Reversed components Bent leads Analog specifications Digital logic Performance (timing) Occurrence frequency (%) Ref.: J. Bateson, In-Circuit Testing, Van Nostrand Reinhold, 1985.

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 55 Common Fault Models n Single stuck-at faults n Transistor open and short faults n Memory faults n PLA faults (stuck-at, cross-point, bridging) n Functional faults (processors) n Delay faults (transition, path) n Analog faults n For more details of fault models, see M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits, Springer, 2000.

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 56 Single Stuck-at Fault n Three properties define a single stuck-at fault n Only one line is faulty n The faulty line is permanently set to 0 or 1 n The fault can be at an input or output of a gate n Example: XOR circuit has 12 fault sites ( ) and 24 single stuck-at faults a b c d e f 1 0 g h i 1 s-a-0 j k z 0(1) 1(0) 1 Test vector for h s-a-0 fault Good circuit value Faulty circuit value

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 57 Fault Equivalence n Number of fault sites in a Boolean gate circuit is = #PI + #gates + # (fanout branches) n Fault equivalence: Two faults f1 and f2 are equivalent if all tests that detect f1 also detect f2. n If faults f1 and f2 are equivalent then the corresponding faulty functions are identical. n Fault collapsing: All single faults of a logic circuit can be divided into disjoint equivalence subsets, where all faults in a subset are mutually equivalent. A collapsed fault set contains one fault from each equivalence subset.

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 58 Equivalence Rules sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 AND NAND OR NOR WIRE NOT FANOUT

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 59 Equivalence Example sa0 sa1 Faults in boldface removed by equivalence collapsing 20 Collapse ratio = ── =

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 510 Fault Dominance n If all tests of some fault F1 detect another fault F2, then F2 is said to dominate F1. n Dominance fault collapsing: If fault F2 dominates F1, then F2 is removed from the fault list. n When dominance fault collapsing is used, it is sufficient to consider only the input faults of Boolean gates. See the next example. n In a tree circuit (without fanouts) PI faults form a dominance collapsed fault set. n If two faults dominate each other then they are equivalent.

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 511 Dominance Example s-a-1 F1 s-a-1 F All tests of F2 Only test of F1 s-a-1 s-a-0 A dominance collapsed fault set

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 512 Dominance Example sa0 sa1 Faults in red removed by equivalence collapsing 15 Collapse ratio = ── = Faults in yellow removed by dominance collapsing

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 513 Checkpoints n Primary inputs and fanout branches of a combinational circuit are called checkpoints. n Checkpoint theorem: A test set that detects all single (multiple) stuck-at faults on all checkpoints of a combinational circuit, also detects all single (multiple) stuck-at faults in that circuit. Total fault sites = 16 Checkpoints ( ) = 10

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 514 Classes of Stuck-at Faults n Following classes of single stuck-at faults are identified by fault simulators: n Potentially-detectable fault -- Test produces an unknown (X) state at primary output (PO); detection is probabilistic, usually with 50% probability. n Initialization fault -- Fault prevents initialization of the faulty circuit; can be detected as a potentially-detectable fault. n Hyperactive fault -- Fault induces much internal signal activity without reaching PO. n Redundant fault -- No test exists for the fault. n Untestable fault -- Test generator is unable to find a test.

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 515 Multiple Stuck-at Faults n A multiple stuck-at fault means that any set of lines is stuck-at some combination of (0,1) values. n The total number of single and multiple stuck-at faults in a circuit with k single fault sites is 3 k -1. n A single fault test can fail to detect the target fault if another fault is also present, however, such masking of one fault by another is rare. n Statistically, single fault tests cover a very large number of multiple faults.

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 516 Transistor (Switch) Faults n MOS transistor is considered an ideal switch and two types of faults are modeled: n Stuck-open -- a single transistor is permanently stuck in the open state. n Stuck-short -- a single transistor is permanently shorted irrespective of its gate voltage. n Detection of a stuck-open fault requires two vectors. n Detection of a stuck-short fault requires the measurement of quiescent current (I DDQ ).

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 517 Stuck-Open Example Two-vector s-op test can be constructed by ordering two s-at tests A B V DD C pMOS FETs nMOS FETs Stuck- open (Z) Good circuit states Faulty circuit states Vector 1: test for A s-a-0 (Initialization vector) Vector 2 (test for A s-a-1)

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 518 Stuck-Short Example A B V DD C pMOS FETs nMOS FETs Stuck- short (X) Good circuit state Faulty circuit state Test vector for A s-a-0 I DDQ path in faulty circuit

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 519 Summary n Fault models are analyzable approximations of defects and are essential for a test methodology. n For digital logic single stuck-at fault model offers best advantage of tools and experience. n Many other faults (bridging, stuck-open and multiple stuck-at) are largely covered by stuck-at fault tests. n Stuck-short and delay faults and technology- dependent faults require special tests. n Memory and analog circuits need other specialized fault models and tests.

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 520 Review Exercise n What are three most common types of blocks a modern SOC is likely to have? Circle three: analog circuit, digital logic, fluidics, memory, MEMS, optics, RF. n The cost of a chip is US$1.00 when its yield is 50%. What will be its cost if you increased the yield to 80%. n What is the total number of single stuck-at faults, counting both stuck-at-0 and stuck-at-1, in the following circuit?

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 521 Answers n What are three most common types of blocks a modern SOC is likely to have? Circle three: analog circuit, digital logic, fluidics, memory, MEMS, optics, RF. n The cost of a chip is US$1.00 when its yield is 50%. What will be its cost if you increased the yield to 80%. Assume a wafer has n chips, then wafer cost Chip cost= ──────── =$ × n Wafer cost=0.5n × $1.00=50n cents For yield = 0.8, chip cost = wafer cost/(0.8n) = 50n/(0.8n) = 62.5 cents

Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 522 Answers Continued n What is the total number of single stuck-at faults, counting both stuck-at-0 and stuck-at-1, in the following circuit? Counting two faults on each line, Total number of faults= 2 × (#PI + #gates + #fanout branches) = 2 × ( ) = 12 s-a-0 s-a-1