Microorganisms and Microbiology

Slides:



Advertisements
Similar presentations
Main Themes of Microbiology
Advertisements

© 2004 Wadsworth – Thomson Learning Chapter 1 The Science of Microbiology.
病原生物学 Medical Microbiology and Parasitology Part I: Medical Microbiology Part II: Medical Parasitology.
1 Introduction to Microbiology BIO 6 Denise Lim. 2 ParScore Scantrons for Lecture Tests  Orange, 8.5" X 11"  Do not wait until the day of the exam to.
Introductory Microbiology Bryan Paul University of Alberta, Canada 1.
Introduction to Microbiology. Introduction Microbes are ubiquitous (everywhere) Friends & Enemies Of great importance to healthcare.
General Microbiology Nickolas V. Kapp Ph.D. What is a Microbe Smaller than 0.1mm Includes bugs, things, germs, viruses, protozoan, bacteria, animalcules,
Chapter 1. Microorganisms and Microbiology
The History of Microbiology What is microbiology and how has this science come to be a specialized part of biology? Microbiology as a Science Organisms.
Lecture 1 Introduction, History and Microscopy Text Chapters: ;
Fundamentals of Microbiology “Introduction to the biology of bacterial and archaeal organisms” Topics include microbial cell structure and function, methods.
Microorganisms and Microbiology
The Main Themes of Microbiology
Microbiology an introduction.
Introduction to Microbiology
General Microbiology (MICR300) Lecture 1 Introduction, History and Microscopy (Text Chapters: ; )
Microbiology History Chapter One. Microorganisms Beneficial Environment Decomposition Digestion Photosynthesis Industry Food processes Genetic Engineering.
Biology of microorganisms Zhao Bin and He shaojiang The college of Life Science and Technology Huazhong Agricultural University.
Microbiology for the Health Sciences Chapter 1
An illustration from … T. MADHAVAN, M.Sc., M.L.I.S., M.Ed., M.Phil., P.G.D.C.A., Lecturer in Zoology.. Optimized for the New syllabus of Zoology {Microbiology.
Assist. Prof. Emrah Ruh NEU Faculty of Medicine Department of Medical Microbiology.
Microbiology Pre-AP Introduction to Medical Microbiology.
A Brief History of Microbiology The Microbes of Microbiology
HISTORY OF MICROBIOLOGY Medical Microbiology Mrs. Bagwell.
1 Why Study Microbiology? Ubiquity –Roles in disease –Presence everywhere Biological roles –Food chain –Environmental element recycling Animal digestion.
Fundamentals of Microbiology Course code: BSC Credit Hour: 3(3+0)
Foundations in Microbiology Sixth Edition Lecture 1: The Main Themes of Microbiology Department of Medical Microbiology, School of Medicine Ilam University.
Scope of Microbiology Chapter 1 Textbook: Foundations in Microbiology
Unit 1 The Science Of Microbiology Donna Howell Medical Microbiology Blacksburg High School.
1BIOL 2103 Microbiology Summer II 2005 Mon thru Friday, Lecture 8 am LSE 204; Lab 10 am -11:50 or 12 – 1:50 pm, LSW 546 Instructor: Dr. David F. Gilmore.
Introduction to microbiology. Morphology of microorganisms Vinnitsa National Pirogov Memorial Medical University/ Department of microbiology.
Honors Microbiology. Chapter 1 – Scope of Microbiology I. Why Study Microbiology? – Microbes have a major impact on human health, environment, and help.
Humans and the Microbial World Chapter 1. What is a Microorganism? 1.Definition 2.Prokaryotic or Eukaryotic? 3.Unicellular or Multicellular?
Introduction علم الاحياء الدقيقة Microbiology. Definition of Microbiology Microbiology: mikros (small) bios (life) logos (science.
1. Development of Microbiology History of Microbiology Siti Sarah Jumali Room 3/14.
Medical Microbiology.
Medical microbiology CLS 212. Introduction What is microbiology? the branch of biology that studies microorganisms and their effects on humans Microorganisms.
Burton's Microbiology for the Health Sciences Section I
CLS 311 Basic Microbiology
Introduction to Microbiology. Microbiology Study of microscopic (living ) things E.g. viruses, bacteria, algae, protists, fungi.
Microbiology The study of of organisms too small to be seen without magnification bacteria viruses fungi protozoa helminths (worms) algae.
Copyright © 2006 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation ROBERT W. BAUMAN M ICROBIOLOGY ALTERNATE.
Introduction to Microbiology. Microbiology Study of microscopic (living ) things E.g. viruses, bacteria, algae, protists, fungi.
Medical Microbiology MDL243 Dr. KHALID M ALJARALLAH MDL243 - Dr. Khalid AlaraAlah - 2nd term 34/35 1.
Chapter 1 Lecture Outline
Microbiology Introduction and History. Microbiology – Introduction and History Beer Cheese Staphylococcal folliculitis Conjunctivitis Chicken pox.
Introduction علم الاحياء الدقيقة Microbiology. Definition of Microbiology Microbiology: mikros (small) bios (life) logos (science.
Microbiology Chapter 1. Microbiology The study of organisms too small to be seen without magnification The study of organisms too small to be seen without.
Microbiology is a science that deals with the study of living organisms and agents that are too small to be seen clearly by the naked eye. Greek – ‘Mikros’
Microbiology Agustin Krisna Wardani. What is microbiology? Study of microscopic (living ) things  microorganism.
Foundations in Microbiology Chapter 1. Microbiology The study of of organisms too small to be seen without magnification bacteria viruses fungi protozoa.
Chapter 1.
Definition, Scope of Microbiology Course : B.SC. (MICRO) Subject: ELEMENTARY MICROBIOLOGY Unit:
Introduction to Microbiology
A Brief History of Microbiology
Bacteria Kingdom By Danroy Adams.
Introduction to Microbiology
THE HISTORY OF MICROBIOLOGY.
Introduction Definition of Microbiology
What Is Microbiology About and Why Is It Important?
Clinical Practice Microbiology
What Is Microbiology About and Why Is It Important?
LECTURE TOPIC: HISTORY AND EVOLUTION OF MICROBIOLOGY
What Is Microbiology About and Why Is It Important?
What Is Microbiology About and Why Is It Important?
MICROBIOLOGY Micro = small, bio = life and logo = study
What Is Microbiology About and Why Is It Important?
What Is Microbiology About and Why Is It Important?
Burton’s Microbiology for the Health Sciences Section I
Mbio 140 Lecture-1.
Presentation transcript:

Microorganisms and Microbiology Chapter 1 Microorganisms and Microbiology

Chapter outline 1.1 What is a microbe? 1.2 The importance of Microbiology 1.3 Microbes in our lives 1.4 The history of microbiology 1.5 Important events in the development of microbiology

Concepts Microorganisms are responsible for many of the changes observed in organic and inorganic matter (e.g., fermentation and the carbon, nitrogen and sulfur cycles that occurred in nature. The development of microbiology as a scientific discipline has depended on the availability of the microscope and the ability to isolate and grow pure cultures of microorganisms. Microbiology is a large discipline, which has a great impact on other areas of biology and general human welfare

1.1 What is a microbe? The word microbe (microorganism) is used to describe an organism that is so small that can not be seen without the use of a microscope. Viruses, bacteria, fungi, protozoa and some algae are all included in this category.

Our world is populated by invisible creatures too small to be seen with the unaided eye. These life forms, the microbes or microorganisms, may be seen only by magnifying their image with a microscope.

Infectious agents (non-living) Microbial world Organisms (living) Infectious agents (non-living) Prokaryotes (unicellular) eukaryotes viruses viroids prions Eubacteria Archaea Algae (unicellular or multicellular) Fungi (unicellular or multicellular) Protozoa (unicellular) Other (multicellular organisms)

The size and cell type of microbes Most of the bacteria, protozoa, and fungi are single-celled microorganisms, and even the multicelled microbes do not have a great range of cell types. Viruses are not even cells, just genetic material surrounded by a protein coat and incapable of independent existence.

Approximate range of sizes The size and cell type of microbes Microbe Approximate range of sizes Cell type Viruses 0.01-0.25µm Acellular Bacteria 0.1-10µm Prokaryote Fungi 2µm->1m Eukaryote Protozoa 2-1000µm Algae 1µm-several meters

1.2 The importance of microbiology Microbes impinge on all aspects of life, just a few of these are listed below: The environment Medicine Food Biotechnology Research

The environment Medicine Food Biotechnology Research Press here to continue

Microbes are responsible for the geochemical cycles Microbes are responsible for the geochemical cycles. They are found in association with plants in symbiotic relationships. Some microbes are devastating plant pathogens, but others may act as biological control agents against diseases.

The disease-causing ability of some microbes is well known The disease-causing ability of some microbes is well known. However, microorganisms have also provided us with the means of their control in the form of antibiotics and other medically important drugs.

Microbes have been used to produce food, from brewing and wine making, through cheese production and bread making, to the manufacture of soy sauce. But microbes are also responsible for food spoilage.

Traditionally microbes have been used to synthesize important chemicals. The advent of genetic engineering techniques has led to the cloning of polypeptides into microbes.

Microbes have been used as model organisms for the investigation of biochemical and genetical processes. Millions of copies of the same single cell can be produced very quickly and give plenty of homogeneous experimental material. Most people have no ethical objections to experiments with these microorganisms.

1.3 Microbes in our lives Microorganisms and Agriculture Microorganisms as Disease Agents Microorganisms and Agriculture Microorganisms and the Food Industry Microorganisms, Energy, and the Environment Microorganisms and the Future

Branches of Microbiology Microbial physiology Microbial genetics Microbial Morphology Virology Parasitology Branches of Microbiology Mycology Protozoology Bacteriology Microbial ecology Molecular biology Microbial taxonomy Phycology or Algology

The future of microbiology is bright Microbiology is one of the most rewarding of professions, because it gives its practitioners the opportunity to be in contact with all the other natural science and thus to contribute in many different ways to the betterment of human life.

1.4 The history of microbiology In the field of observation, chance favors only prepared minds. ------ Louis Pasteur

The discovery of microorganisms The spontaneous generation conflict The recognition of microbial role in disease The discovery of microbial effects on organic and inorganic matter The development of microbiology in this century

The discovery of microorganisms Antony van Leeuwenhock (1632-1723) The first person to accurately observe and describe microorganisms

The first person to observe and describe microorganisms was the amateur microscopist Antony van leeuwenhoek of Delft, Holland. Leeuwenhock made his simple, single-lens microscope which could amplify the object being viewed 50 – 300 times. Between 1673-1723, he wrote a series of letters to the Royal Society of London describing the microbes he observed from the samples of rainwater, and humam mouth.

Leeuwenhoek’s drawings of bacteria from the human mouth. lens Object being viewed A drawing of one of the microscopes showing the lens a; mounting pin b; and focusing screws c and d. adjusting screws Leeuwenhoek’s drawings of bacteria from the human mouth.

Louis Pasteur working in his laboratory Pasteur’s contributions: Pasteur (1857) demonstrated that lactic acid fermentation is due to the activity of micro-organisms Pasteur (1861) conflict over spontaneous generation – birth of microbiology as a science Pasteur (1881) developed anthrax vaccine Pasteurization Louis Pasteur working in his laboratory

The spontaneous generation conflict Spontaneous generation – that living organisms could develop from nonliving or decomposing matter.

Pasteur’s swan neck flasks used in his experiments on the spontaneous generation of microorganisms

Conclusion: Microorganisms are not spontaneously generated from inanimate matter, but are produced by other microorganisms

Robert Koch (1843 – 1910) The recognition of microbial role in disease Robert Koch in his laboratory

Koch’s demonstration of special organisms cause special diseases

Koch’s postulates The microorganisms must be present in every case of the disease but absent from healthy organisms. The suspected microorganisms must be isolated and grown in a pure culture. The disease must result when the isolated microorganisms is inoculated into a healthy host. The same microorganisms must be isolated again from the diseased host

The Golden age of microbiology Koch and pure cultures Fermentation and Pasteurization Germ theory of disease Vaccination

The discovery of microbial effects on organic and inorganic matter The Russian microbiologist Winograsky discovered that soil bacteria could oxidize iron, sulfur and ammonia to obtain energy, and also isolated nitrogen–fixing bacteria. Beijerinck made fundamental contributions to microbial ecology. He isolated Azotobacter and Rhizobium.

Alexander Fleming (1881-1955) Sir Alexander Fleming discovered the antibiotic penicillin. He had the insight to recognize the significance of the inhibition of bacterial growth in the vicinity of a fungal contaminant.

1.5 Important events in the development of microbiology Date Microbiological History 1676 Leeuwenhoek discovers "animalcules" Pasteur shows that lactic acid fermentation is due to a microorganism Pasteur shows that microorganisms do not arise by spontaneous generation 1867 Lister publishes his work on antiseptic surgery 1869 Miescher discovers nucleic acids 1876-1877 Koch demonstrates that anthrax is caused by Bacillus anthracis Laveran discovers Plasmodium, the cause of malaria 1881 Koch cultures bacteria on gelatin Pasteur develops anthrax vaccine

1884 Koch's postulates first published Metchnikoff describes phagocytosis Gram stain developed 1887 Petri dish (plate) developed by Richard Petri Beijerinck isolates root nodule bacteria Beijerinck proves that a virus particle causes the tobacco mosaic disease 1921 Fleming discovers lysozyme 1923 First edition of Bergey's Manual 1928 Griffith discovers bacterial transformation 1929 Fleming discovers penicillin Ruska develops first transmission electron microscope 1935 Stanley crystallizes the tobacco mosaic virus

Avery shows that DNA carries information during transformation Waksman discovers streptomycin Watson and Crick propose the double helix structure for DNA 1961-1966 Cohen et al use plasmid vectors to clone genes in bacteria 1980 Development of the scanning tunneling microscope 1983-1984 The polymerase chain reaction developed by Mullis 1990 First human gene-therapy testing begun Discovery of Thiomargarita namibiensis, the largest known bacterium Escherichia coli genome sequenced Discovery that Vibrio cholerae has two separate chromosomes

REVIEW QUESTIONS: 1.How did Pasteur's famous experiment defeat the theory of spontaneous generation? 2.How can Koch's postulates prove cause and effect in a disease? 3.Who was the first person to use solid culture media in microbiology? What advantages do solid media offer for the culture of microorganisms?

4.What is the enrichment culture technique and why was it a useful new method in microbiology? 5.When and how Alexander Fleming discovered antibiotics?

APPLICATION QUESTIONS: 1. Pasteur's experiments on spontaneous generation were of enormous importance for the advance of microbiology, having an impact on the methodology of microbiology, ideas on (he origin of life, and the preservation of food,to name just a few. Explain briefly how the impact of his experiments was felt on each of the topics listed.

2. Describe the various lines of proof Robert Koch used to definitively associate the bacterium Mycobacterium tuberculosis with the disease tuberculosis. How would his proof have been flawed if any of the tools he developed for studying bacterial diseases had not been available for his study of tuberculosis?

References: 沈萍 1999. 微生物学 高等教育出版社。 J。尼克林著 林雅兰等译。 科学出版社。 沈萍 1999. 微生物学 高等教育出版社。 J。尼克林著 林雅兰等译。 科学出版社。 周德庆 2002. 微生物学教程 第二版。高等教育出版社。 李阜棣 胡正嘉 . 2000 微生物学。 第五版。中国农业出版社 。 赵斌 何绍江. 2002 微生物学实验。科学出版社。 Johnson.case. Laboratory Experiments in Microbiology. John P.Harley Lansing M.Prescott Microbiology 3th Edition. Ronald M.Atlas Clifford Renk Principles of Microbiology. Lansing, M. Prescott ;John, P. Harley; and Donald, A. Klein . 2002. Microbiology, 5th ed. McGraw-Hill . Gerard J. Tortora ; Bardell R. Funke ; Christine L. 1998. Case. Microbiology An Introduction , 6th . Benjamin/Cummings. Michael, T. Madigan; John, M. Martinko; and Jack, Parker. 2003. Brock Biology of Microorganisms , 10th . Prentice-Hall.