Ben Gurion University of the Negev www.bgu.ac.il/atomchip Week 9. Inductance – Self-inductance RL circuits Energy in a magnetic field mutual inductance.

Slides:



Advertisements
Similar presentations
Inductance Self-Inductance RL Circuits Energy in a Magnetic Field
Advertisements

Dale E. Gary Wenda Cao NJIT Physics Department
AC Circuits II Physics 2415 Lecture 23 Michael Fowler, UVa.
Electromagnetic Induction
Physics 1402: Lecture 21 Today’s Agenda Announcements: –Induction, RL circuits Homework 06: due next MondayHomework 06: due next Monday Induction / AC.
Dr. Jie ZouPHY Chapter 32 Inductance. Dr. Jie ZouPHY Outline Self-inductance (32.1) Mutual induction (32.4) RL circuits (32.2) Energy in a.
Chapter 32: Inductance Reading assignment: Chapter 32
Physics 4 Inductance Prepared by Vince Zaccone
Self-inductance and inductors(sec. 30.2) Magnetic field energy(sec. 30.3) RL circuit(sec. 30.4) LC circuit (sec. 30.5) RLC series circuit (sec. 30.6) Inductance.
Ch. 32 Self Inductance Inductance A
Ch. 30 Inductance AP Physics. Mutual Inductance According to Faraday’s law, an emf is induced in a stationary circuit whenever the magnetic flux varies.
Physics 2102 Inductors, RL circuits, LC circuits Physics 2102 Gabriela González.
Physics 2102 Lecture 19 Ch 30: Inductors and RL Circuits Physics 2102 Jonathan Dowling Nikolai Tesla.
-Self Inductance -Inductance of a Solenoid -RL Circuit -Energy Stored in an Inductor AP Physics C Mrs. Coyle.
Self-Inductance When the switch is closed, the current does not immediately reach its maximum value Faraday’s law can be used to describe the effect.
Fall 2008Physics 231Lecture 10-1 Chapter 30 Inductance.
Inductance Self-Inductance A
INDUCTANCE. When the current in a loop if wire changes with time, an emf is induced in the loop according to Faraday’s law. The self- induced emf is Ɛ.
Chapter 32 Inductance.
RC, RLC circuit and Magnetic field RC Charge relaxation RLC Oscillation Helmholtz coils.
RL and LC Circuits Capacitor and Inductors in Series Resistors and Inductors in Series.
Chapter 32 Inductance. Joseph Henry 1797 – 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one.
1 Chapter 16 Capacitors and Inductors in Circuits.
Chapter 30 Inductance. Self Inductance When a time dependent current passes through a coil, a changing magnetic flux is produced inside the coil and this.
1 Faraday’s Law Chapter Ampere’s law Magnetic field is produced by time variation of electric field.
Inductance and AC Circuits. Mutual Inductance Self-Inductance Energy Stored in a Magnetic Field LR Circuits LC Circuits and Electromagnetic Oscillations.
Chapter 24 Inductance and
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 32 Inductance. Self-inductance  A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying.
Chapter 32 Inductance. Introduction In this chapter we will look at applications of induced currents, including: – Self Inductance of a circuit – Inductors.
Wednesday, Nov. 16, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #20 Wednesday, Nov. 16, 2005 Dr. Jaehoon Yu Self Inductance.
Copyright © 2009 Pearson Education, Inc. Chapter 33 Inductance, Electromagnetic Oscillations, and AC Circuits.
Self-Inductance, RL Circuits
Inductance and Magnetic Energy Chapter 32 Mutual Inductance Self-Inductance Inductors in Circuits Magnetic Energy.
Chapter 32 Inductance.
Lecture 18-1 Ways to Change Magnetic Flux Changing the magnitude of the field within a conducting loop (or coil). Changing the area of the loop (or coil)
Chapter 32 Inductance L and the stored magnetic energy RL and LC circuits RLC circuit.
Lecture 27: FRI 20 MAR Inductors & Inductance Ch.30.7–9 Inductors & Inductance Physics 2102 Jonathan Dowling Nikolai Tesla.
IV–3 Energy of Magnetic Field Main Topics Transformers Energy of Magnetic Field Energy Density of Magnetic Field An RC Circuit.
Chapter 30 Inductance. Inductor and Inductance Capacitor: store electric energy Inductor: store magnetic energy Measure how effective it is at trapping.
Self Inductance. A variable power supply is connected to a loop. The current in the loop creates a magnetic field. What happens when the power supply.
Physics 2 for Electrical Engineering Ben Gurion University of the Negev
Chapter 32 Inductance. Joseph Henry 1797 – 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one.
Lecture 19: THU 25 MAR 2010 Ch30. Ch30.5–9 Induction and Inductance II Induction and Inductance II Physics 2102 Jonathan Dowling.
Chapter 32 Inductance. Self-inductance Some terminology first: Use emf and current when they are caused by batteries or other sources Use induced emf.
Slide 1Fig 32-CO, p Slide 2  As the source current increases with time, the magnetic flux through the circuit loop due to this current also increases.
INDUCTANCE. When the current in a loop if wire changes with time, an emf is induced in the loop according to Faraday’s law. The self- induced emf is Ɛ.
Copyright © 2009 Pearson Education, Inc. Chapter 32: Inductance, Electromagnetic Oscillations, and AC Circuits.
Inductance and AC Circuits. Mutual Inductance Self-Inductance Energy Stored in a Magnetic Field LR Circuits LC Circuits and Electromagnetic Oscillations.
Self Inductance Consider a solenoid L, connect it to a battery Area A, length  l, N turns What happens as you close the switch? Lenz’s law – loop resists.
CHAPTER 32 : INDUCTANCE Source = source emf and source current Induced = emfs and currents caused by a changing magnetic field. S R I I 1st example Consider.
Chapter 30 Lecture 31: Faraday’s Law and Induction: II HW 10 (problems): 29.15, 29.36, 29.48, 29.54, 30.14, 30.34, 30.42, Due Friday, Dec. 4.
Lecture 10 Induction Applications Chapter 20.6  20.8 Outline Self-Inductance RL Circuits Energy Stored in a Magnetic Field.
Lesson 10 Calculation of Inductance LR circuits
Monday, April 23, PHYS , Spring 2007 Dr. Andrew Brandt PHYS 1444 – Section 004 Lecture #19 Monday, April 23, 2007 Dr. Andrew Brandt Inductance.
Self Inductance and RL Circuits
Self Inductance Consider a solenoid L, connect it to a battery Area A, length  l, N turns What happens as you close the switch? Lenz’s law – loop resists.
Wednesday, Apr. 19, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #21 Wednesday, Apr. 19, 2006 Dr. Jaehoon Yu Energy.
Thursday August 2, PHYS 1444 Ian Howley PHYS 1444 Lecture #15 Thursday August 2, 2012 Ian Howley Dr. B will assign final (?) HW today(?) It is due.
Copyright © 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits.
Last time Ampere's Law Faraday’s law 1. Faraday’s Law of Induction (More Quantitative) The magnitude of the induced EMF in conducting loop is equal to.
Copyright © 2009 Pearson Education, Inc. Chapter 29 Electromagnetic Induction and Faraday’s Law.
For vacuum and material with constant susceptibility M 21 is a constant and given by Inductance We know already: changing magnetic flux creates an emf.
Inductance of a solenoid
Mutual Inductance Mutual inductance: a changing current in one coil will induce a current in a second coil: And vice versa; note that the constant M, known.
Eddy Current A current induced in a solid conducting object, due to motion of the object in an external magnetic field. The presence of eddy current in.
AC circuits Physics /27/2018 Lecture IX.
University Physics Chapter 14 INDUCTANCE.
Ch. 31 Self Inductance Inductance A
Ch. 31 Self Inductance Inductance A
Presentation transcript:

Ben Gurion University of the Negev Week 9. Inductance – Self-inductance RL circuits Energy in a magnetic field mutual inductance LC circuits RLC circuits Source: Halliday, Resnick and Krane, 5 th Edition, Chap. 36. Lecturer: Daniel Rohrlich Teaching Assistants: Oren Rosenblatt, Shay Inbar Physics 2B for Materials and Structural Engineering

Self-inductance We have already seen several circuit elements: battery capacitor switch resistor and now we are going to get to know the inductor

Self-inductance Let’s see what an inductor does in a circuit. When current starts to flow through an inductor, it induces a magnetic flux that changes that same current. Hence the term “self” inductance. The inductance L of an inductor is defined according to the “emf” E that it produces for a given change in current: which is analogous to the definition of capacitance: Like C, L is defined to be positive.

Self-inductance What is the self-inductance of a long solenoid? We apply Faraday ’ s law, to the solenoid, by calculating the magnetic flux in the solenoid: Φ B = πr 2 B, where N is the total number of coils in the solenoid, r is its radius and n is the number of coils per unit length. Also, the formula for B inside a solenoid is B = μ 0 nI. The inductor “links” with itself N times!

Self-inductance What is the self-inductance of a long solenoid? From B = μ 0 nI, and Φ B = π r 2 B we have from which we infer L = μ 0 nπ r 2 N for a long solenoid.

Self-inductance Since the formula for inductance is and the “emf” E has units of volts, the unit of inductance must be volt/ (ampere/second). This unit is called the henry and denoted H: H = V·s/A. Joseph Henry

Self-inductance Example 1: (a) Calculate the inductance L of a solenoid with 100 coils/cm if the volume inside the solenoid is 10 –6 m 3. (b) The current in the solenoid is decreasing by 0.50 A/s. What is the induced “emf”? Answer: (a) Note where l is the length of the solenoid; thus π r 2 l is the volume, and we have L = μ 0 n 2 (π r 2 l) = (4π × 10 –7 T·m/A)(10 8 /m 2 )(10 –6 m 3 ) = 4π × 10 –5 T·m 2 /A and we check via “E + v × B” that T·m 2 /A = V · s/A.

Self-inductance Example 1: (a) Calculate the inductance L of a solenoid with 100 coils/cm if the volume inside the solenoid is 10 –6 m 3. (b) The current in the solenoid is decreasing by 0.50 A/s. What is the induced “emf”? Answer: (b) We substitute L = 4π × 10 –5 V · s/A back into the definition E = –L(dI/dt) to obtain E = 2π × 10 –5 V.

RL circuits Now back to the RL circuit: When the switch or circuit breaker is closed, we have (summing potentials around the circuit): where E bat is a constant, the “emf” of the battery. We can write this as

RL circuits The solution is and from t = 0 we have So if I(0) = 0 (if there is no current at t = 0, because the switch was open until then), then

RL circuits Here is a graph of I(t)I(t) t E bat /R L/RL/R 0.63 E bat /R

RL circuits Example 1: A switch controls the current in an RL circuit with large L. Is sparking more likely when you initially close the switch or when you open it after t >> L/R? Answer: When you close the switch, there is no initial current, I(0) = 0, so IR = 0 and the potential on the inductor is – E bat. The potential over the switch drops immediately to 0 and the inductor won’t immediately let current through, so sparking isn’t likely. When you open the switch, there is already a steady current E bat /R and the inductor does not allow the current to drop to 0 immediately, so charge builds up on the switch and may cause sparking.

RL circuits Example 2: Consider the setup below; assume that Switch 1 has been closed for a long time while Switch 2 has been open. At time t = 0, Switch 1 is opened and Switch 2 is closed. What is the current in the upper loop for t > 0? Switch 2 Switch 1

RL circuits Answer: At t = 0, the current has reached its maximum value E bat /R and Kirchhoff’s equation for the circuit is Thus Switch 2 Switch 1

RL circuits Example 3: We repeat the last example with two RL circuits, A and B. Which circuit has the larger L, if the resistances and batteries are the same? I(t)I(t) t A B Open Switch 1, close Switch 2

Energy in a magnetic field If we multiply each term in the circuit equation by I and rearrange the terms, we obtain What is I E bat ? It is the rate at which charge exits the battery at the + end and enters the battery at the – end, times the difference in electric potential between the two ends. So it is the rate at which the battery delivers potential energy to the circuit. What happens to this potential energy? The last term, IL(dI/dt), must be the rate at which energy is stored in the inductor.

Energy in a magnetic field What does it mean that IL(dI/dt) is the rate at which energy is stored by the inductor? As we saw in Example 2, Kirchhoff’s equation for an RL circuit without a battery is implying that the inductor is the source for the “emf” across the resistor.

Energy in a magnetic field Hence if we integrate IL(dI/dt) with respect to time t, starting from I(0) = 0, we must obtain the total energy U stored in the inductor at time t or, equivalently, at current I(t): This expression is analogous to the expression U = q 2 /2C for the energy stored in a capacitor.

Energy in a magnetic field From U = q 2 /2C = C(ΔV) 2 /2 we derived the energy density u E in an electric field of strength E: Likewise we can translate between I and B to derive the energy density u B in a magnetic field of strength B. For a long enough solenoid we have B = μ 0 nI and L = μ 0 nπ r 2 N, where N = nl, so and

Energy in a magnetic field To summarize:

LC circuits At right is an LC circuit: Let’s assume that the capacitor is charged when the switch is closed at t = 0. For t > 0 the equation for the circuit is and since I = dq/dt, it is Solving we will find that the current oscillates!

LC circuits The solution of is q(t) = q max sin(ωt + δ), where q max, ω and δ are constants: q max is the amplitude of the charge oscillations, ω is their angular frequency and δ is their phase. Substituting this solution into the differential equation, we find so and T = 2π/ω = 2π (What about units? The units of L are the henry, H = V·s/A; the units of C are the farad, F = C/V. So LC has units s 2 and has units s –1 = Hz.)

LC circuits The solution of is q(t) = q max sin(ωt + δ), where q max, ω and δ are constants: q max is the amplitude of the charge oscillations, ω is their angular frequency and δ is their phase. Substituting this solution into the differential equation, we find so and T = 2π/ω = 2π Note: While the charge is q(t) = q max sin(ωt + δ), the current is I = dq/dt = ωq max cos(ωt + δ) = I max cos(ωt + δ). This means that the charge and current are π/2 or T/4 out of phase.

LC circuits The formulas for q and I in an LC circuit are analogous to the formulas for the position x and momentum p of a body in a harmonic oscillator. Thus, we can intuitively understand LC circuits by analogy with harmonic oscillators. v = 0 x max I = 0 q max –q max t = 0 E

LC circuits The formulas for q and I in an LC circuit are analogous to the formulas for the position x and momentum p of a body in a harmonic oscillator. Thus, we can intuitively understand LC circuits by analogy with harmonic oscillators. x = 0 q = 0 I = I max t = T/4 v = v max B

LC circuits The formulas for q and I in an LC circuit are analogous to the formulas for the position x and momentum p of a body in a harmonic oscillator. Thus, we can intuitively understand LC circuits by analogy with harmonic oscillators. The energy of a harmonic oscillator is the sum of its kinetic and potential energies: The energy in the LC circuit has the same form: In both systems, the total energy is constant.

RLC circuits Just as harmonic motion may be forced or damped, so can an electrical circuit. Adding a resistor to an LC circuit turns it into an RLC circuit, and the resistor damps the oscillations. The equation for the circuit is now its solution is an exponential function in which ω is complex.

RLC circuits Substituting this solution into the equation for the circuit, we find this is a quadratic equation and its solutions are For R = 0 we recover the LC result.

RLC circuits Substituting this solution into the equation for the circuit, we find this is a quadratic equation and its solutions are For we get damped oscillations at a reduced frequency: q(t) = e –Rt/2L q max sin(ω't + δ), where ω' =

Halliday, Resnick and Krane, 5 th Edition, Chap. 36, Prob. 13: Three identical inductors (with inductance L) and two identical capacitors (with capacitance C) are connected as shown. Show the circuit has two different angular frequencies, and I1I1 I2I2

Halliday, Resnick and Krane, 5 th Edition, Chap. 36, Prob. 13: Answer: The three paths from “A” to “B” must have the same potential difference. We therefore obtain A B I1I1 I2I2

Halliday, Resnick and Krane, 5 th Edition, Chap. 36, Prob. 13: Answer: The three paths from “A” to “B” must have the same potential difference. We therefore obtain We can now derive equations for q 1 – q 2 and for q 1 + q 2 with different angular frequencies: