1 Overview of the DES A block cipher: –encrypts blocks of 64 bits using a 64 bit key –outputs 64 bits of ciphertext A product cipher –basic unit is the.

Slides:



Advertisements
Similar presentations
DES The Data Encryption Standard (DES) is a classic symmetric block cipher algorithm. DES was developed in the 1970’s as a US government standard The block.
Advertisements

“Advanced Encryption Standard” & “Modes of Operation”
CS 483 – SD SECTION BY DR. DANIYAL ALGHAZZAWI (3) Information Security.
Self-Healing in Wireless Networks. The self-healing property is expected in many aspects in wireless networks: – Encryption algorithms – Key distribution.
1 Lecture 3: Secret Key Cryptography Outline concepts DES IDEA AES.
1 CIS 5371 Cryptography 5b. Pseudorandom Objects in Practice Block Ciphers.
Cryptography and Network Security Chapter 3
Rachana Y. Patil 1 Data Encryption Standard (DES) (DES)
Data Encryption Standard (DES)
Symmetric Encryption Example: DES Weichao Wang. 2 Overview of the DES A block cipher: – encrypts blocks of 64 bits using a 64 bit key – outputs 64 bits.
Secret Key Cryptography
1 The AES block cipher Niels Ferguson. 2 What is it? Block cipher: encrypts fixed-size blocks. Design by two Belgians. Chosen from 15 entries in a competition.
Cryptography1 CPSC 3730 Cryptography Chapter 3 DES.
Chapter 5 Cryptography Protecting principals communication in systems.
DES 1 Data Encryption Standard DES 2 Data Encryption Standard  DES developed in 1970’s  Based on IBM Lucifer cipher  U.S. government standard  DES.
Announcements: Quizzes returned at end of class Quizzes returned at end of class This week: Mon-Thurs: Data Encryption Standard (DES) Mon-Thurs: Data Encryption.
McGraw-Hill©The McGraw-Hill Companies, Inc., Security PART VII.
ITIS 3200: Introduction to Information Security and Privacy Dr. Weichao Wang.
Chapter 3 – Block Ciphers and the Data Encryption Standard Jen-Chang Liu, 2004 Adopted from lecture slides by Lawrie Brown.
Introduction to Symmetric Block Cipher Jing Deng Based on Prof. Rick Han’s Lecture Slides Dr. Andreas Steffen’s Security Tutorial.
Computer Networking Lecture 21: Security and Cryptography Thanks to various folks from , semester’s past and others.
CS Network Security Lecture 2 Prof. Katz. 9/7/2000Lecture 2 - Data Encryption2 DES – Data Encryption Standard Private key. Encrypts by series of.
Lecture 23 Symmetric Encryption
Lecture 2.2: Private Key Cryptography II CS 436/636/736 Spring 2012 Nitesh Saxena.
CSE 651: Introduction to Network Security
ECE454/CS594 Computer and Network Security Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2011.
The Data Encryption Standard - see Susan Landau’s paper: “Standing the test of time: the data encryption standard.” DES - adopted in 1977 as a standard.
CSCI 5857: Encoding and Encryption
Cryptography and Network Security Chapter 6. Multiple Encryption & DES  clear a replacement for DES was needed theoretical attacks that can break it.
CS461/ECE422 Spring  Commercial Symmetric systems  DES  AES  Modes of block and stream ciphers 21/31/12Nikita Borisov — UIUC.
1 Symmetric Cryptography CS461/ECE422 Fall Outline Overview of Cryptosystem design Commercial Symmetric systems –DES –AES Modes of block and stream.
Chapter 20 Symmetric Encryption and Message Confidentiality.
TE/CS 536 Network Security Spring 2006 – Lectures 6&7 Secret Key Cryptography.
Chapter 20 Symmetric Encryption and Message Confidentiality.
CS526: Information Security Prof. Sam Wagstaff September 16, 2003 Cryptography Basics.
Day 37 8: Network Security8-1. 8: Network Security8-2 Symmetric key cryptography symmetric key crypto: Bob and Alice share know same (symmetric) key:
Block ciphers Structure of a multiround block cipher
CS555Spring 2012/Topic 111 Cryptography CS 555 Topic 11: Encryption Modes and CCA Security.
Cryptography Chapter 7 Part 2 Pages 781 to 812. Symmetric Cryptography Secret Key Figure 7-10 on page 782 Key distribution problem – Secure courier Many.
1 Lect. 7 : Data Encryption Standard. 2 Data Encryption Standard (DES)  DES - History 1976 – adopted as a federal standard 1977 – official publication.
3DES and Block Cipher Modes of Operation CSE 651: Introduction to Network Security.
Multiple Encryption & DES  clearly a replacement for DES was needed Vulnerable to brute-force key search attacks Vulnerable to brute-force key search.
Data Encryption Standard (DES) © 2000 Gregory Kesden.
1.1 Chapter 8 Encipherment Using Modern Symmetric-Key Ciphers Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
BLOCK CIPHER SYSTEMS OPERATION MODES OF DATA ENCRYPTION STANDARD (DES)
Introduction to Computer Security ©2004 Matt Bishop Information Security Principles Assistant Professor Dr. Sana’a Wafa Al-Sayegh 1 st Semester
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Security.
Classical &ontemporyryptology 1 Block Cipher Today’s most widely used ciphers are in the class of Block Ciphers Today’s most widely used ciphers are in.
DES Algorithm Data Encryption Standard. DES Features Block cipher, 64 bits per block 64-bit key, with only 56 bits effective ECB mode and CBC mode.
September 10, 2009Introduction to Computer Security ©2004 Matt Bishop Slide #8-1 Chapter 8: Basic Cryptography Classical Cryptography Public Key Cryptography.
Le Trong Ngoc Security Fundamentals (2) Encryption mechanisms 4/2011.
24-Nov-15Security Cryptography Cryptography is the science and art of transforming messages to make them secure and immune to attacks. It involves plaintext,
Lecture 23 Symmetric Encryption
Exam 1 Review CS461/ECE422 Fall Exam guidelines A single page of supplementary notes is allowed  8.5x11. Both sides. Write as small as you like.
1 Symmetric key cryptography: DES DES: Data Encryption Standard US encryption standard [NIST 1993] 56-bit symmetric key, 64 bit plaintext input How secure.
Symmetric Encryption Lesson Introduction ●Block cipher primitives ●DES ●AES ●Encrypting large message ●Message integrity.
Data Encryption Standard (DES)
DES Analysis and Attacks CSCI 5857: Encoding and Encryption.
Linear Cryptanalysis of DES
DATA & COMPUTER SECURITY (CSNB414) MODULE 3 MODERN SYMMETRIC ENCRYPTION.
1 The Data Encryption Standard. 2 Outline 4.1 Introduction 4.4 DES 4.5 Modes of Operation 4.6 Breaking DES 4.7 Meet-in-the-Middle Attacks.
David Evans CS551: Security and Privacy University of Virginia Computer Science Lecture 4: Dissin’ DES The design took.
Depart. of Computer Science and Engineering
Linear Cryptanalysis of DES M. Matsui. 1.Linear Cryptanalysis Method for DES Cipher. EUROCRYPT 93, 1994.Linear Cryptanalysis Method for DES Cipher 2.The.
Data Encryption Standard (DES) Financial companies found the need for a cryptographic algorithm that would have the blessing of the US government (=NSA)
6b. Practical Constructions of Symmetric-Key Primitives.
Lecture 3: Symmetric Key Encryption
Presentation transcript:

1 Overview of the DES A block cipher: –encrypts blocks of 64 bits using a 64 bit key –outputs 64 bits of ciphertext A product cipher –basic unit is the bit –performs both substitution and transposition (permutation) on the bits Cipher consists of 16 rounds (iterations), each with a 48-bit round key generated from the 64-bit key

2 Generation of Round Keys Round keys are 48 bits each

3 Encipherment

4 The f Function

5 S-Box –There are eight S-Box, each maps 6-bit input to 4-bit output –Each S-Box is a look-up table –This is the only non-linear step in DES and contributes the most to its safety P-Box –A permutation

6 Controversy Considered too weak –Diffie, Hellman said “in a few years technology would allow DES to be broken in days” DES Challenge organized by RSA In 1997, solved in 96 days; 41 days in early 1998; 56 hours in late 1998; 22 hours in Jan racker/HTML/ _deschallenge3.htmlhttp://w2.eff.org/Privacy/Crypto/Crypto_misc/DESC racker/HTML/ _deschallenge3.html –Design decisions not public S-boxes may have backdoors

7 Undesirable Properties 4 weak keys –They are their own inverses 12 semi-weak keys –Each has another semi-weak key as inverse Complementation property –DES k (m) = c  DES k (m) = c S-boxes exhibit irregular properties –Distribution of odd, even numbers non-random –Outputs of fourth box depends on input to third box

8 Number of rounds –After 5 rounds, every cipher bit is impacted by every plaintext bit and key bit –After 8 rounds, cipher text is already a random function –When the number of rounds is 16 or more, brute force attack will be the most efficient attack for known plaintext attack –So NSA knows a lot when it fixes the DES

9 Differential Cryptanalysis A chosen ciphertext attack –Requires 2 47 (plaintext, ciphertext) pairs Revealed several properties –Small changes in S-boxes reduce the number of (plaintext, ciphertext) pairs needed –Making every bit of the round keys independent does not impede attack Linear cryptanalysis improves result –Requires 2 43 (plaintext, ciphertext) pairs

10 Multiple encryption of DES –Before we study multiple DES, a question must be answered. Is DES a group? E K2 ( E K1 (P)) = E K3 (P) –It is proven that DES is not a group in 1993

11 Double encryption –Encrypt the plaintext twice with different keys C = E K2 (E K1 (P)), P = D K1 (D K2 (C)) –If DES uses 56 bit key, can we get 112 bit key security? –Meet-in-the-middle attack makes the safety to 57 bits instead of 112 bit –Tradeoff storage and search for computation –Double encryption will not achieve your goal

12 DES Modes Electronic Code Book Mode (ECB) –Encipher each block independently Cipher Block Chaining Mode (CBC) –Xor each plaintext block with previous ciphertext block –Requires an initialization vector for the first one –The initialization vector can be made public

13 CBC Mode Encryption  init. vector m1m1 DES c1c1  m2m2 c2c2 sent … … …

14 CBC Mode Decryption  init. vector c1c1 DES m1m1 … … …  c2c2 m2m2

15 Self-Healing Property What will happen if a bit gets lost during transmission? –All blocks will not be aligned When one bit in a block flipped, only the next two blocks will be impacted. –Plaintext “heals” after 2 blocks

16 Current Status of DES Design for computer system, associated software that could break any DES-enciphered message in a few days published in 1998 Several challenges to break DES messages solved using distributed computing NIST selected Rijndael as Advanced Encryption Standard, successor to DES –Designed to withstand attacks that were successful on DES