Device Research Conference 2011

Slides:



Advertisements
Similar presentations
Development of THz Transistors & ( GHz) Sub-mm-Wave ICs , fax The 11th International Symposium on.
Advertisements

CSICS 2013 Monterey, California A DC-100 GHz Bandwidth and 20.5 dB Gain Limiting Amplifier in 0.25μm InP DHBT Technology Saeid Daneshgar, Prof. Mark Rodwell.
The state-of-art based GaAs HBT
High performance 110 nm InGaAs/InP DHBTs in dry-etched in-situ refractory emitter contact technology Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
2007 DRC Ultra Low Resistance Ohmic Contacts to InGaAs/InP Uttam Singisetti*, A.M. Crook, E. Lind, J.D. Zimmerman, M. A. Wistey, M.J.W. Rodwell, and A.C.
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Y. Wei, M. Urteaga, Z. Griffith, D. Scott, S. Xie, V. Paidi, N. Parthasarathy, M. Rodwell. Department of Electrical and Computer Engineering, University.
High Current Density and High Power Density Operation of Ultra High Speed InP DHBTs Mattias Dahlström 1, Zach Griffith, Young-Min Kim 2, Mark J.W. Rodwell.
In-situ and Ex-situ Ohmic Contacts To Heavily Doped p-InGaAs TLM Fabrication by photolithography and liftoff Ir dry etched in SF 6 /Ar with Ni as etch.
Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan, D. Scott, T. Mathew, Y. Wei, M. Dahlstrom, S. Lee, M. Rodwell. Department.
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,
NAMBE 2010 Ashish Baraskar, UCSB 1 In-situ Iridium Refractory Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain, Evan Lobisser, Brian Thibeault,
DRC mS/  m In 0.53 Ga 0.47 As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg.
IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur.
Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara.
Ashish Baraskar 1, Mark A. Wistey 3, Evan Lobisser 1, Vibhor Jain 1, Uttam Singisetti 1, Greg Burek 1, Yong Ju Lee 4, Brian Thibeault 1, Arthur Gossard.
2010 Electronic Materials Conference Ashish Baraskar June 23-25, 2010 – Notre Dame, IN 1 In-situ Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain,
High speed InP-based heterojunction bipolar transistors Mark Rodwell University of California, Santa Barbara ,
1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell.
Device Research Conference 2006 Erik Lind, Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University of California,
40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of.
2013 IEEE Compound Semiconductor IC Symposium, October 13-15, Monterey, C 30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected.
InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes , fax 2003.
1999 IEEE Symposium on Indium Phosphide & Related Materials
87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy.
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
100+ GHz Transistor Electronics: Present and Projected Capabilities , fax 2010 IEEE International Topical.
Frequency Limits of Bipolar Integrated Circuits , fax Mark Rodwell University of California, Santa Barbara.
Rodwell et al, UCSB: Keynote talk, 2000 IEEE Bipolar/BICMOS Circuits and Technology Meeting, Minneapolis, September Submicron Scaling of III-V HBTs for.
M. Dahlström, Z. Griffith, M. Urteaga, M.J.W. Rodwell University of California, Santa Barbara, CA, USA X.-M. Fang, D. Lubyshev, Y. Wu, J.M. Fastenau and.
W-band InP/InGaAs/InP DHBT MMIC Power Amplifiers Yun Wei, Sangmin Lee, Sundararajan Krishnan, Mattias Dahlström, Miguel Urteaga, Mark Rodwell Department.
V. Paidi, Z. Griffith, Y. Wei, M. Dahlstrom,
Chart 1 A 204.8GHz Static Divide-by-8 Frequency Divider in 250nm InP HBT Zach Griffith, Miguel Urteaga, Richard Pierson, Petra Rowell, Mark Rodwell*, and.
University of California Santa Barbara Yingda Dong Characterization of Contact Resistivity on InAs/GaSb Interface Y. Dong, D. Scott, A.C. Gossard and M.J.
Ultra high speed heterojunction bipolar transistor technology Mark Rodwell University of California, Santa Barbara ,
Indium Phosphide Bipolar Integrated Circuits: 40 GHz and beyond Mark Rodwell University of California, Santa Barbara ,
THz Transistors, sub-mm-wave ICs, mm-wave Systems , fax 20th Annual Workshop on Interconnections within High.
III-V HBT device physics: what to include in future compact models , fax Mark Rodwell University of California,
InGaAs/InP DHBTs with Emitter and Base Defined through Electron-beam Lithography for Reduced C cb and Increased RF Cut-off Frequency Evan Lobisser 1,*,
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
High speed (207 GHz f  ), Low Thermal Resistance, High Current Density Metamorphic InP/InGaAs/InP DHBTs grown on a GaAs Substrate Y.M. Kim, M. Dahlstrǒm,
Frequency Limits of InP-based Integrated Circuits , fax Collaborators (III-V MOS) A. Gossard, S. Stemmer,
Urteaga et al, 2001 Device Research Conference, June, Notre Dame, Illinois Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan,
2009 Electronic Materials Conference Ashish Baraskar June 24-26, 2009 – University Park, PA 1 High Doping Effects on In-situ and Ex-situ Ohmic Contacts.
Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana.
Transistor and Circuit Design for GHz ICs , fax Mark Rodwell University of California, Santa Barbara.
University of California, Santa Barbara
Indium Phosphide and Related Material Conference 2006 Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
Current Density Limits in InP DHBTs: Collector Current Spreading and Effective Electron Velocity Mattias Dahlström 1 and Mark J.W. Rodwell Department of.
Improved Regrowth of Self-Aligned Ohmic Contacts for III-V FETs North American Molecular Beam Epitaxy Conference (NAMBE), Mark A. Wistey Now at.
Developing Bipolar Transistors for Sub-mm-Wave Amplifiers and Next-Generation (300 GHz) Digital Circuits ,
THz Bipolar Transistor Circuits: Technical Feasibility, Technology Development, Integrated Circuit Results ,
185 GHz Monolithic Amplifier in InGaAs/InAlAs Transferred-Substrate HBT Technology M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department.
Device Research Conference 2007 Erik Lind, Adam M. Crook, Zach Griffith, and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
IEEE Bipolar/BiCMOS Circuits and Technology Meeting Zach Griffith, Mattias Dahlström, and Mark J.W. Rodwell Department of Electrical and Computer Engineering.
Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V.
On the Feasibility of Few-THz Bipolar Transistors , fax *Now at University of Texas, Austin Invited Paper,
Indium Phosphide and Related Materials
Uttam Singisetti. , Mark A. Wistey, Greg J. Burek, Ashish K
ISCS 2008 InGaAs MOSFET with self-aligned Source/Drain by MBE regrowth Uttam Singisetti*, Mark A. Wistey, Greg J. Burek, Erdem Arkun, Ashish K. Baraskar,
Ultra Wideband DHBTs using a Graded Carbon-Doped InGaAs Base Mattias Dahlström, Miguel Urteaga,Sundararajan Krishnan, Navin Parthasarathy, Mark Rodwell.
A Self-Aligned Epitaxial Regrowth Process for Sub-100-nm III-V FETs A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
A High-Dynamic-Range W-band
20th IPRM, MAY 2008, Versallies-France
Lower Limits To Specific Contact Resistivity
High Transconductance Surface Channel In0. 53Ga0
Record Extrinsic Transconductance (2. 45 mS/μm at VDS = 0
Presentation transcript:

Device Research Conference 2011 1.0-THz fmax InP DHBTs in a refractory emitter and self-aligned base process for reduced base access resistance Vibhor Jain, Johann C. Rode, Han-Wei Chiang, Ashish Baraskar, Evan Lobisser, Brian J Thibeault, Mark Rodwell ECE Department, University of California, Santa Barbara, CA 93106-9560 Miguel Urteaga Teledyne Scientific & Imaging, Thousand Oaks, CA 91360 D Loubychev, A Snyder, Y Wu, J M Fastenau, W K Liu IQE Inc., 119 Technology Drive, Bethlehem, PA 18015 vibhor@ece.ucsb.edu, 805-893-3273

Outline Need for high speed HBTs Fabrication DHBT Summary Challenges Process Development DHBT Epitaxial Design Results Summary

Why THz Transistors? Digital Logic for Optical fiber circuits High gain at microwave frequencies  precision analog design, high resolution ADC & DAC, high performance receivers Digital Logic for Optical fiber circuits THz amplifiers for imaging, sensing, communications 3

HBT process requirements Refractory emitter contact and metal stack To sustain high current density operation Low stress emitters For high yield Low base access resistance For improved device fmax Thin emitter semiconductor To enable a wet etched emitter process for reliability and scalability

Fabrication Challenges – Stable refractory emitters Emitter yield drops during base contact, subsequent lift-off steps Fallen emitters High stress in emitter metal stack Poor metal adhesion to InGaAs Need for low stress, high yield emitters

Fabrication Challenges – Base-Emitter Short Undercut in thick emitter semiconductor Helps in Self Aligned Base Liftoff InP Wet Etch Slow etch plane Fast etch plane For controlled semiconductor undercut Thin semiconductor To prevent base – emitter short Vertical emitter profile and line of sight metal deposition Shadowing effect due to high emitter aspect ratio

Fabrication Challenges – Base Access Resistance We Wgap Wbc Surface Depletion Process Damage  Need for very small Wgap Small undercut in InP emitter Self-aligned base contact

Composite Emitter Metal Stack W emitter TiW W Erik Lind TiW emitter Evan Lobisser W/TiW metal stack Low stress Refractory metal emitters Vertical dry etch profile

Vertical Emitter Vertical etch profile Low stress High emitter yield FIB/TEM by E Lobisser Vertical Emitter TiW W Base Metal BCB SiNx 100nm Vertical etch profile Low stress High emitter yield Scalable emitter process

Narrow Emitter Undercut FIB/TEM by E Lobisser Narrow Emitter Undercut InGaAs cap Mo contact InP emitter Dual SiN sidewall Controlled InP undercut Narrow BE gap 50nm

Epitaxial Design Vbe = 1 V, Vcb = 0.7 V, Je = 24 mA/mm2 T(nm) Material Doping (cm-3) Description 10 In0.53Ga0.47As 81019 : Si Emitter Cap 20 InP 51019 : Si Emitter 15 21018 : Si 30 InGaAs 9-51019 : C Base 13.5 In0.53Ga0.47 As 51016 : Si Setback 16.5 InGaAs / InAlAs B-C Grade 3 3.6 1018 : Si Pulse doping 67 Collector 7.5 11019 : Si Sub Collector 5 41019 : Si 300 21019 : Si Substrate SI : InP Vbe = 1 V, Vcb = 0.7 V, Je = 24 mA/mm2 Thin emitter semiconductor  Enables wet etching

Results - DC Measurements Common emitter I-V @Peak ft,fmax Je = 20.4 mA/mm2 P = 33.5 mW/mm2 BVceo = 3.7 V @ Je = 0.1 mA/cm2 β = 17 Gummel plot

TEM – Wide, misaligned base mesa FIB/TEM by H. Chiang TEM – Wide, misaligned base mesa Misalignment 0.5 mm 50 nm 220 nm emitter-base junction 1.1 mm wide base-collector mesa Small EB gap

RF Data Ic = 12.1 mA Je = 20.4 mA/mm2 Vcb = 0.7 V P = 33.5 mW/mm2 W-Band measurements to verify ft/fmax

Base Post Cap Ccb,post does not scale with Le Adversely effects fmax as Le ↓ Need to minimize the Ccb,post value

Base Post Cap Ccb,post does not scale with Le Adversely effects fmax as Le ↓ Need to minimize the Ccb,post value Undercut below base post No contribution of Base post to Ccb

Base Metal Resistance BP Base Ib Rbb,metal increases with emitter length  fmax decreases with increase in emitter length

Base Metal Resistance BP Base Ib Rbb,metal increases with emitter length  fmax decreases with increase in emitter length

Parameter Extraction Jkirk = 23 mA/mm2 (@Vcb = 0.7V)

Hybrid-p equivalent circuit from measured RF data Rex ~ 4.2 Wmm2 Hybrid-p equivalent circuit from measured RF data

Summary Demonstrated DHBTs with peak ft / fmax = 480/1000 GHz Small Wgap for reduced base access resistance  High fmax Undercut below the base post to reduce Ccb Narrow sidewalls, smaller base mesa and better base ohmics needed to enable higher bandwidth devices

Thank You Questions? This work was supported by the DARPA THETA program under HR0011-09-C-006. A portion of this work was done in the UCSB nanofabrication facility, part of NSF funded NNIN network and MRL Central Facilities supported by the MRSEC Program of the NSF under award No. MR05-20415