Understanding, controlling, and overcoming decoherence and noise in quantum computation NSF September 10, 2007 Kaveh Khodjasteh, D.A.L., PRL 95, 180501.

Slides:



Advertisements
Similar presentations
University of Strathclyde
Advertisements

Dynamical Decoupling a tutorial
Quantum Walks, Quantum Gates, and Quantum Computers Andrew Hines P.C.E. Stamp [Palm Beach, Gold Coast, Australia]
Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.
Quantum dynamics and quantum control of spins in diamond Viatcheslav Dobrovitski Ames Laboratory US DOE, Iowa State University Works done in collaboration.
Quantum computing hardware.
Suppressing decoherence and heating with quantum bang-bang controls David Vitali and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Scaling up a Josephson Junction Quantum Computer Basic elements of quantum computer have been demonstrated 4-5 qubit algorithms within reach 8-10 likely.
Quantum Error Correction Joshua Kretchmer Gautam Wilkins Eric Zhou.
Quantum Control in Semiconductor Quantum Dots Yan-Ten Lu Physics, NCKU.
Quantum Computers and Decoherence: Exorcising the Demon from the Machine Daniel Lidar Chemical Physics Theory Group Chemistry Department University of.
Analysis of the Superoperator Obtained by Process Tomography of the Quantum Fourier Transform in a Liquid-State NMR Experiment Joseph Emerson Dept. of.
ECE 497NC: Unconventional Computer Architecture Lecture 12: Quantum Computers II – Implementation Issues Nicholas Carter.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Ion Trap Quantum Computer. Two Level Atom as a qubit Electron on lower orbit Electron on higher orbit.
Quantum Computing Ambarish Roy Presentation Flow.
Encoded Universality – an Overview Julia Kempe University of California, Berkeley Department of Chemistry & Computer Science Division Sponsors:
“Quantum computation with quantum dots and terahertz cavity quantum electrodynamics” Sherwin, et al. Phys. Rev A. 60, 3508 (1999) Norm Moulton LPS.
The Integration Algorithm A quantum computer could integrate a function in less computational time then a classical computer... The integral of a one dimensional.
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
Image courtesy of Keith Schwab.
Quantum Mechanics from Classical Statistics. what is an atom ? quantum mechanics : isolated object quantum mechanics : isolated object quantum field theory.
In Search of a Magic Bottle of Error-Be-Gone Dave Bacon Caltech Department of Physics Institute for Quantum Information Decoherence errosol.
An Arbitrary Two-qubit Computation in 23 Elementary Gates or Less Stephen S. Bullock and Igor L. Markov University of Michigan Departments of Mathematics.
Dynamical Error Correction for Encoded Quantum Computation Kaveh Khodjasteh and Daniel Lidar University of Southern California December, 2007 QEC07.
Simulating Physical Systems by Quantum Computers J. E. Gubernatis Theoretical Division Los Alamos National Laboratory.
Hybrid quantum decoupling and error correction Leonid Pryadko University of California, Riverside Pinaki Sengupta(LANL) Greg Quiroz (USC) Sasha Korotkov.
Quantum Communication, Quantum Entanglement and All That Jazz Mark M. Wilde Communication Sciences Institute, Ming Hsieh Department of Electrical Engineering,
Quantum Information Processing
Quantum computing Alex Karassev. Quantum Computer Quantum computer uses properties of elementary particle that are predicted by quantum mechanics Usual.
Quantum Devices (or, How to Build Your Own Quantum Computer)
Liquid State NMR Quantum Computing
Quantum Error Correction and Fault-Tolerance Todd A. Brun, Daniel A. Lidar, Ben Reichardt, Paolo Zanardi University of Southern California.
Introduction to Quantum Computation Neil Shenvi Department of Chemistry Yale University.
Dynamical decoupling in solids
Decoherence-free/Noiseless Subsystems for Quantum Computation IPQI, Bhubaneswar February 24, 2014 Mark Byrd Physics Department, CS Department Southern.
Quantum Information Jan Guzowski. Universal Quantum Computers are Only Years Away From David’s Deutsch weblog: „For a long time my standard answer to.
Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7.
Quantum computation: Why, what, and how I.Qubitology and quantum circuits II.Quantum algorithms III. Physical implementations Carlton M. Caves University.
Implementation of Quantum Computing Ethan Brown Devin Harper With emphasis on the Kane quantum computer.
1 hardware of quantum computer 1. quantum registers 2. quantum gates.
Global control, perpetual coupling and the like Easing the experimental burden Simon Benjamin, Oxford. EPSRC. DTI, Royal Soc.
Facts about quantum computation & speculation about the human brain Tim Hugo Taminiau Kavli Institute of Nanoscience, Delft University Quantum superposition.
Quantum Computing Paola Cappellaro
Quantum Computer 電機四 鄭仲鈞. Outline Quantum Computer Quantum Computing Implement of Quantum Computer Nowadays research of Quantum computer.
Quantum Control Classical Input Classical Output QUANTUM WORLD QUANTUM INFORMATION INSIDE Preparation Readout Dynamics.
Quantum Computers by Ran Li.
Quantum Convolutional Coding Techniques Mark M. Wilde Communication Sciences Institute, Ming Hsieh Department of Electrical Engineering, University of.
A simple nearest-neighbour two-body Hamiltonian system for which the ground state is a universal resource for quantum computation Stephen Bartlett Terry.
Gang Shu  Basic concepts  QC with Optical Driven Excitens  Spin-based QDQC with Optical Methods  Conclusions.
Quantum Mechanics(14/2) Hongki Lee BIOPHOTONICS ENGINEERING LABORATORY School of Electrical and Electronic Engineering, Yonsei University Quantum Computing.
Goren Gordon, Gershon Kurizki Weizmann Institute of Science, Israel Daniel Lidar University of Southern California, USA QEC07 USC Los Angeles, USA Dec.
Entangling Quantum Virtual Subsytems Paolo Zanardi ISI Foundation February Universita’di Milano.
Quantum Corby Ziesman Computing. Future of Computing? Transistor-based Computing –Move towards parallel architectures Biological Computing –DNA computing.
Hybrid quantum error prevention, reduction, and correction methods Daniel Lidar University of Toronto Quantum Information & Quantum Control Conference.
Large scale quantum computing in silicon with imprecise qubit couplings ArXiv : (2015)
1 Quantum Computation with coupled quantum dots. 2 Two sides of a coin Two different polarization of a photon Alignment of a nuclear spin in a uniform.
Page 1 COMPSCI 290.2: Computer Security “Quantum Cryptography” including Quantum Communication Quantum Computing.
As if computers weren’t fast enough already…
An Introduction to Quantum Computation Sandy Irani Department of Computer Science University of California, Irvine.
Purdue University Spring 2016 Prof. Yong P. Chen Lecture 18 (3/24/2016) Slide Introduction to Quantum Photonics.
Quantum Bits (qubit) 1 qubit probabilistically represents 2 states
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
QUANTUM COMPUTING: Quantum computing is an attempt to unite Quantum mechanics and information science together to achieve next generation computation.
Algorithmic simulation of far-from- equilibrium dynamics using quantum computer Walter V. Pogosov 1,2,3 1 Dukhov Research Institute of Automatics (Rosatom),
Outline Device & setup Initialization and read out
Many-body Spin Echo and Quantum Walks in Functional Spaces
Quantum computation with classical bits
Quantum Computing Hakem Alazmi Jhilakshi Sharma Linda Vu.
Analytical calculation Ideal pulse approximation
Presentation transcript:

Understanding, controlling, and overcoming decoherence and noise in quantum computation NSF September 10, 2007 Kaveh Khodjasteh, D.A.L., PRL 95, (2005); PRA 75, (2007)

Quantum Computers are Open Systems: Decoherence Quantum computers use superposition and entanglement (“massive parallelism”) Every real quantum system interacts with an environment (“bath”). Environment is noisy & uncontrollable. The environment acts as an uncontrollable observer, making random-time measurements, in random basis. Destroys superposition states. + Devastating for quantum computation: A sufficiently decohered quantum computer admits efficient simulation on a classical computer.

Is Decoherence a Problem? 2 level system (qubit) Switch time T Rabi flop [sec] Decoherence time T 2 (upper bound) Quality factor T 2 /T (no. of ops) Charge of electron in bulk GaAs Exciton in GaAs quantum dot Electron spin in GaAs quantum dot Trapped ion (In) sdddd Nuclear spin in liquid state NMR Atom in microwave cavity aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa 10 4 aaaaa 10 3 aaaaa 10 4 aaaaa 10 5 aaaaa 10 7 aaaaa 10 9 aaaaa How can we overcome decoherence?

Example: electron spins in a semiconductor quantum dot Model: D i po l ar i n t erac t i onamong t h enuc l e i : ¯ S ome d a t a f or G a A s J = O ( I§ n A n ) ¼ 1 MH z ¯ = O ( I 2 § n < m B nm ) ¼ 10 KH z [Merkulov, Efros, Rosen, PRB. 65, , (2002)] H yper ¯ ne i n t erac t i on b e t weene l ec t ronsan d nuc l e i : J H = H S + H SB + H B = X i ­ i Z i + X i ; n A i ; n ~ ¾ i ¢ ~ I n + X n ; m B nm [ ~ I n ~ I m ]

Robust Hadamard Gate for Spin Bath System Bath A 1 ; 1 B 1 ; 3

System-Bath Model of Decoherence and Noise Besides the quantum system S there is always an environment or bath B. Hamiltonian: For a single system qubit Errors come from faulty control and undesired couplings with the environment. Indirectly also from. C on t a i nsour ( f au l t y ) con t ro l H c ( t ) H = H S ( t ) ­ I B + I S ­ H B + H SB H e = I S ­ B 0 + X ­ B X + Y ­ B Y + Z ­ B Z T h ereex i s t sapu l sesequence t h a t e l i m i na t esanyar b i t rary H SB

A pulse sequence that eliminates the system-bath interaction for a single qubit: Universal Dynamical Decoupling = on system ± ; ¿ ! 0 P ro bl em:wor k s i mper f ec t l y w h en ± ; ¿ 6 = 0. E rrorsaccumu l a t eas sequencegrows.

Concatenated Universal Dynamical Decoupling To counter error accumulation, correct errors at all timescales: Nest the universal DD pulse sequence into its own free evolution periods f : p(1)= X f Z f X f Z f p(2)= X p(1)Z p(1)X p(1)Z p(1) etc. LevelConcatenated DD Series after multiplying Pauli matrices 1 XfZfXfZfXfZfXfZf 2 fZfXfZfYfZfXfZffZfXfZfYfZfXfZf 3 XfZfXfZfYfZfXfZffZfXfZfYfZfXfZfZfZfXfZfYfZfXfZffZfXfZfYfZfXfZfXfZf XfZfYfZfXfZffZfXfZfYfZfXfZfZfZfXfZfYfZfXfZffZfXfZfYfZfXfZf Length grows exponentially; how about error reduction?

Performance of Concatenated Sequences [Khodjasteh & Lidar, PRA 75, (2007) ] F i x t h e t o t a l sequence d ura t i onso i t h as 4 n ¿pu l ses. n = conca t ena t i on l eve l ¿ = pu l se i n t erva l A ssumezeropu l sew i d t h ¯d ( n ) ¸ 1 ¡ 4 j a j n 4 j b j n 2

Dynamical Decoupling for Quantum Memory: Numerically Exact Simulations for Spin Chain l og ( 1 ¡ ¯d ( n )) · j a j n ¡ j b j n 2 Spin bath initially in equilibrium at 1K Theory bound:

Computation Problem: DD pulses can interfere with logic gates (cancel them too) How can they be reconciled? Need a commuting structure of pulses and computation. Use encoded qubits from a DFS. Pick DD pulses to commute with logical gates over DFS, such that DD pulses are still a universal decoupling group.   1 23  j 0 L i = 1 2 ( j 01 i ¡ j 10 i )( j 01 i ¡ j 10 i ) j 1 L i = 1 2 p 3 ( 2 j 0011 i + 2 j 1100 i ¡ j 0110 i ¡ j 1001 i ¡ j 1010 i ¡ j 0101 i )

Heisenberg Computation over DFS is Universal Heisenberg exchange interaction: Universal over collective-decoherence DFS [J. Kempe, D. Bacon, D.A.L., B. Whaley, Phys. Rev. A 63, (2001)] Over 4-qubit DFS: CNOT involves 14 elementary steps (D. Bacon, Ph.D. thesis) H H e i s = P i ; j J ij ( X i X j + Y i Y j + Z i Z j ) ´ P i ; j J ij E ij ¹ X = ¡ 2 p 3 ( E E 12 ) ¹ Z = ¡ E 12 e i µ ¹ X an d e i µ ¹ Z genera t ear b i t rarys i ng l eenco d e d qu b i t ga t es

Universal Decoupling Group Commutes with Heisenberg Exchange n levels of concatenation, N=4 n pulses Universal decoupling group on M (even) system-spins: p(1)= X U Z U X U Z U p(2)= X p(1)Z p(1)X p(1)Z p(1) … X 1 ¢¢¢ X M Z 1 ¢¢¢ Z M [ H H e i s ; X or Z ] = 0 e ¡ i ( µ = N ) H ga t e t XZZXX UUUU Next: demonstrate discrete set of (encoded) single-qubit gates from universal set

4-Qubit DFS π/8 Gate + CDD: ideal pulses, varying internal bath coupling J=10MHz, T=100nsec Concatenation Level System Bath A 1 ; 1 B 1 ; 3 ¯ = 0 : 1 MH z ¯ = 100 MH z Internal bath coupling CDD PDD

β=10MHz, T=100nsec Concatenation Level CDD PDD System Bath A 1 ; 1 B 1 ; 3 system-bath coupling J = 0 : 01 MH z J = 10 MH z 4-Qubit DFS π/8 Gate + CDD: ideal pulses, varying system-bath coupling

4-Qubit DFS Logic Gate + CDD, Finite Width Pulses t System Bath A 1 ; 1 B 1 ; 3

Conclusions Decoherence and noise remain the fundamental obstacle to large scale implementation of quantum computers A concatenated dynamical decoupling strategy drastically improves fidelity of quantum memory and quantum logic gates What next? –Consider Hybrid CDD-QEC strategy –What is the fault-tolerance threshold for this hybrid setting? –Optimal Decoupling: Can we do better than CDD?