Prestack Migration Deconvolution Jianxing Hu and Gerard T. Schuster University of Utah.

Slides:



Advertisements
Similar presentations
Geological Model Depth(km) X(km) 2001 Year.
Advertisements

Adaptive Grid Reverse-Time Migration Yue Wang. Outline Motivation and ObjectiveMotivation and Objective Reverse Time MethodologyReverse Time Methodology.
Selecting Robust Parameters for Migration Deconvolution University of Utah Jianhua Yu.
First Arrival Traveltime and Waveform Inversion of Refraction Data Jianming Sheng and Gerard T. Schuster University of Utah October, 2002.
Interferometric Interpolation of 3D OBS Data Weiping Cao, University of Utah Oct
Imaging Multiple Reflections with Reverse- Time Migration Yue Wang University of Utah.
Depth (m) Time (s) Raw Seismograms Four-Layer Sand Channel Model Midpoint (m)
Specular-Ray Parameter Extraction and Stationary Phase Migration Jing Chen University of Utah.
Wavepath Migration versus Kirchhoff Migration: 3-D Prestack Examples H. Sun and G. T. Schuster University of Utah.
Reduced-Time Migration of Converted Waves David Sheley and Gerard T. Schuster University of Utah.
Salt Boundary Delineation by Transmitted PS Waves David Sheley.
Primary-Only Imaging Condition Yue Wang. Outline Objective Objective POIC Methodology POIC Methodology Synthetic Data Tests Synthetic Data Tests 5-layer.
Reverse-Time Migration By A Variable Grid-Size And Time-Step Method Yue Wang University of Utah.
Solving Illumination Problems Solving Illumination Problems in Imaging:Efficient RTM & in Imaging:Efficient RTM & Migration Deconvolution Migration Deconvolution.
TARGET-ORIENTED LEAST SQUARES MIGRATION Zhiyong Jiang Geology and Geophysics Department University of Utah.
CROSSWELL IMAGING BY 2-D PRESTACK WAVEPATH MIGRATION
3-D Migration Deconvolution Jianxing Hu, GXT Bob Estill, Unocal Jianhua Yu, University of Utah Gerard T. Schuster, University of Utah.
Loading of the data/conversion Demultiplexing Editing Geometry Amplitude correction Frequency filter Deconvolution Velocity analysis NMO/DMO-Correction.
Improve Migration Image Quality by 3-D Migration Deconvolution Jianhua Yu, Gerard T. Schuster University of Utah.
Joint Migration of Primary and Multiple Reflections in RVSP Data Jianhua Yu, Gerard T. Schuster University of Utah.
Overview of Utah Tomography and Modeling/Migration (UTAM) Chaiwoot B., T. Crosby, G. Jiang, R. He, G. Schuster, Chaiwoot B., T. Crosby, G. Jiang, R. He,
Kirchhoff vs Crosscorrelation
Autocorrelogram Migration of Drill-Bit Data Jianhua Yu, Lew Katz, Fred Followill, and Gerard T. Schuster.
FAST VELOCITY ANALYSIS BY PRESTACK WAVEPATH MIGRATION H. Sun Geology and Geophysics Department University of Utah.
Stabilization of Migration Deconvolution Jianxing Hu University of Utah.
Depth (m) Time (s) Raw Seismograms Four-Layer Sand Channel Model Midpoint (m)
LEAST-SQUARES MIGRATION OF BOTH PRIMARIES AND MULTIPLES Ruiqing He, Gerard Schuster University of Utah Oct
Depth (m) Time (s) Raw Seismograms Four-Layer Sand Channel Model Midpoint (m)
Local Migration with Extrapolated VSP Green’s Functions Xiang Xiao and Gerard Schuster Univ. of Utah.
Midyear Overview of Year 2001 UTAM Results T. Crosby, Y. Liu, G. Schuster, D. Sheley, J. Sheng, H. Sun, J. Yu and M. Zhou J. Yu and M. Zhou.
3-D PRESTACK WAVEPATH MIGRATION H. Sun Geology and Geophysics Department University of Utah.
Migration Deconvolution vs Least Squares Migration Jianhua Yu, Gerard T. Schuster University of Utah.
1 Fast 3D Target-Oriented Reverse Time Datuming Shuqian Dong University of Utah 2 Oct
MD + AVO Inversion Jianhua Yu, University of Utah Jianxing Hu GXT.
3-D Migration Deconvolution: Real Examples Jianhua Yu University of Utah Bob Estill Unocal.
Interferometric Multiple Migration of UPRC Data
Reverse-Time Migration For 3D SEG/EAGE Salt Model
1 Local Reverse Time Migration: P-to-S Converted Wave Case Xiang Xiao and Scott Leaney UTAM, Univ. of Utah Feb. 7, 2008.
Autocorrelogram Migration for Field Data Generated by A Horizontal Drill-bit Source Jianhua Yu, Lew Katz Fred Followill and Gerard T. Schuster.
Demonstration of Super-Resolution and Super-Stacking Properties of Time Reversal Mirrors in Locating Seismic Sources Weiping Cao, Gerard T. Schuster, Ge.
Prestack Migration Deconvolution in Common Offset Domain Jianxing Hu University of Utah.
Multisource Least-squares Reverse Time Migration Wei Dai.
3D Wave-equation Interferometric Migration of VSP Free-surface Multiples Ruiqing He University of Utah Feb., 2006.
V.2 Wavepath Migration Overview Overview Kirchhoff migration smears a reflection along a fat ellipsoid, so that most of the reflection energy is placed.
Overview of Multisource Phase Encoded Seismic Inversion Wei Dai, Ge Zhan, and Gerard Schuster KAUST.
Mitigation of RTM Artifacts with Migration Kernel Decomposition Ge Zhan* and Gerard T. Schuster King Abdullah University of Science and Technology June.
Least Squares Migration of Stacked Supergathers Wei Dai and Gerard Schuster KAUST vs.
Coherence-weighted Wavepath Migration for Teleseismic Data Coherence-weighted Wavepath Migration for Teleseismic Data J. Sheng, G. T. Schuster, K. L. Pankow,
Migration Deconvolution of 3-D Seismic Data Jianxing Hu (University of Utah) Paul Valasek (Phillips Petroleum Company)
Migration In a Nutshell Migration In a Nutshell Migration In a Nutshell D.S. Macpherson.
Impact of MD on AVO Inversion
1 Local Reverse Time Migration: Salt Flank Imaging by PS Waves Xiang Xiao and Scott Leaney 1 1 Schlumberger UTAM, Univ. of Utah Feb. 8, 2008.
Moveout Correction and Migration of Surface-related Resonant Multiples Bowen Guo*,1, Yunsong Huang 2 and Gerard Schuster 1 1 King Abdullah University of.
Multisource Least-squares Migration of Marine Data Xin Wang & Gerard Schuster Nov 7, 2012.
Computing Attributers on Depth-Migrated Data Name : Tengfei Lin Major : Geophysics Advisor : Kurt J. Marfurt AASPI,The University of Oklahoma 1.
Interferometric Interpolation of 3D SSP Data Sherif M. Hanafy Weiping Cao Gerard T. Schuster October 2009.
Fast Least Squares Migration with a Deblurring Filter Naoshi Aoki Feb. 5,
Migration Velocity Analysis of Multi-source Data Xin Wang January 7,
Hydro-frac Source Estimation by Time Reversal Mirrors Weiping Cao and Chaiwoot Boonyasiriwat Feb 7, 2008.
3-D Prestack Migration Deconvolution Bob Estill ( Unocal) Jianhua Yu (University of Utah)
Fast Least Squares Migration with a Deblurring Filter 30 October 2008 Naoshi Aoki 1.
The Earth’s Near Surface as a Vibroseis Signal Generator Zhiyong Jiang University of Utah.
Jianhua Yu University of Utah Robust Imaging for RVSP Data with Static Errors.
Shuqian Dong and Sherif M. Hanafy February 2009 Interpolation and Extrapolation of 2D OBS Data Using Interferometry.
Enhancing Migration Image Quality by 3-D Prestack Migration Deconvolution Gerard Schuster Jianhua Yu, Jianxing Hu University of Utah andGXT
MD+AVO Inversion: Real Examples University of Utah Jianhua Yu.
Interpolating and Extrapolating Marine Data with Interferometry
Zero-Offset Data d = L o ò r ) ( g = d dr r ) ( g = d
Primary-Only Imaging Condition And Interferometric Migration
Han Yu, Bowen Guo*, Sherif Hanafy, Fan-Chi Lin**, Gerard T. Schuster
Presentation transcript:

Prestack Migration Deconvolution Jianxing Hu and Gerard T. Schuster University of Utah

Outline MotivationMotivation MethodologyMethodology Numerical TestsNumerical Tests ConclusionsConclusions

Comparison of Poststack MD Depth Slices 6 8 Y (km) Y (km) X (km) X (km) Kirchhoff Image Kirchhoff Image MD Image MD Image 6 8 Y (km) Y (km) X (km) X (km)

Comparison of Prestack Migration and MD Images X (km) X (km) Depth (km) Depth (km) X (km) X (km) Depth (km) Depth (km) Prestack Kirchhoff Migration Image of Prestack Kirchhoff Migration Image of a North Sea Data Set a North Sea Data Set MD Image

Outline MotivationMotivation MethodologyMethodology Numerical TestsNumerical Tests ConclusionsConclusions

Modeling and Migration Seismic data Reflectivity Green’s Function Model Space Migrated Image Data Space Seismic Data Forward Modeling: Migration: Wavelet

Model Space Where: Denote as the migration Green’s Function Relation of Migrated Image and Reflectivity Distribution Relation of Migrated Image and Reflectivity Distribution Data Space

Reflectivity Modulated by Migration Green’s Function Model Space

Migration Deconvolution Model Space Model Space --- reference position of migration Green’s function

Lateral Velocity Variation Multi-Reference migration Green’s function Subdivide the migration image area and use multi- reference migration Green’s function to account for lateral velocity variation and far-field artifacts

Methodology Calculate migration Green’s function Recording geometry & migrated image dimension Velocity Model + Traveltime Table Migration Green’s function

Methodology Apply migration deconvolution filter to the stacked prestack migration image 5 Offset(km) Depth (km) RTM Migration Image Deconvolved Image Deconvolved Image Pseudo-Convolution Offset(km) Depth (km) RTM

Difference between Poststack MD and Prestack MD Zero-offset trace location & migrated image dimension Velocity Model Traveltime Table migration Poststack migration Green’s function Green’s function + migration Prestack migration Green’s function Green’s function Recording Geometry & migrated image dimension +

Outline MotivationMotivation MethodologyMethodology Numerical TestsNumerical Tests ConclusionsConclusions

Numerical Tests 3-D point scatterer model3-D point scatterer model 3-D meandering stream model3-D meandering stream model 2-D SEG/EAGE overthrust model2-D SEG/EAGE overthrust model 2-D Husky data set (Canadian Foothills)2-D Husky data set (Canadian Foothills) 3-D SEG/EAGE salt model3-D SEG/EAGE salt model 3-D West Texas data set3-D West Texas data set

5 X 5 Sources; 21 X 21 Receivers (0, 0) (1km, 0) (1km, 1km) (0, 1km) Point scatterer Recording Geometry Wavelet frequency 50 Hz

Prestack KM vs. Prestack MD Y X Y X Y X Y X

Prestack KM vs. Poststack MD Y X Y X Y X Y X

Numerical Tests 3-D point scatterer model3-D point scatterer model 3-D meandering stream model3-D meandering stream model 2-D SEG/EAGE overthrust model2-D SEG/EAGE overthrust model 2-D Husky data set (Canadian Foothills)2-D Husky data set (Canadian Foothills) 3-D SEG/EAGE salt model3-D SEG/EAGE salt model 3-D West Texas data set3-D West Texas data set

(0, 0) (1 km, 0) (1 km,1 km) (0, 1 km) A river channel Recording Geometry 5 X 5 Sources; 21 X 21 Receivers Wavelet frequency 50 Hz

Meandering River Model X (m) Y (m)

Kirchhoff Migration Image X (m) Y (m)

MD Image X (m) Y (m)

Numerical Tests 3-D point scatterer model3-D point scatterer model 3-D meandering stream model3-D meandering stream model 2-D SEG/EAGE overthrust model2-D SEG/EAGE overthrust model 2-D Husky data set (Canadian Foothills)2-D Husky data set (Canadian Foothills) 3-D SEG/EAGE salt model3-D SEG/EAGE salt model 3-D West Texas data set3-D West Texas data set

Prestack Migration Image Prestack Migration Image Deconvolved Migration Image Deconvolved Migration Image 0 km 20 km 20 km 0 km 4 km 20 km 0 km 0 km 0 km 4 km X(km) Depth (km)

Zoom View of KM and MD Prestack KM Prestack MD Depth (km) 37 X (km) Depth (km) 37 X (km)

Numerical Tests 3-D point scatterer model3-D point scatterer model 3-D meandering stream model3-D meandering stream model 2-D SEG/EAGE overthrust model2-D SEG/EAGE overthrust model 2-D Husky data set (Canadian Foothills)2-D Husky data set (Canadian Foothills) 3-D SEG/EAGE salt model3-D SEG/EAGE salt model 3-D West Texas data set3-D West Texas data set

Husky Prestack Migration Image 4 6X(km) Depth (km)

Velocity Model for Husky Data 6X(km) Depth (km) Velocity (m/s)

MD with 20 reference positions 6X(km) Depth (km) A

KM X(km) Depth (km) MD X(km) Depth (km)

MD with 20 reference positions 6X(km) Depth (km) B

KM X(km) Depth (km) MD X(km) Depth (km)

MD with 20 reference positions 6X(km) Depth (km) C

KM X(km) Depth (km) MD X(km) Depth (km)

Numerical Tests 3-D point scatterer model3-D point scatterer model 3-D meandering stream model3-D meandering stream model 2-D SEG/EAGE overthrust model2-D SEG/EAGE overthrust model 2-D Husky data set2-D Husky data set 3-D SEG/EAGE salt model3-D SEG/EAGE salt model 3-D West Texas data set3-D West Texas data set

KM Inline (97,Y) Section MD Inline (97,Y) Section 58 Y (km) Depth (km)

KM Crossline (X,97) Section MD Crossline (X,97) Section 04 2 Depth (km) 118 X (km) 118 X (km) 04 2

Numerical Tests 3-D point scatterer model3-D point scatterer model 3-D meandering stream model3-D meandering stream model 2-D SEG/EAGE overthrust model2-D SEG/EAGE overthrust model 2-D Husky data set2-D Husky data set 3-D SEG/EAGE salt model3-D SEG/EAGE salt model 3-D West Texas data set3-D West Texas data set

KMMD03 X(kft)46 8 Depth (kft) X(kft)

46 8 Depth (kft) KMMD4 6 8 X(kft)

Outline MotivationMotivation MethodologyMethodology Numerical TestsNumerical Tests ConclusionsConclusions

Conclusions Works well on 2-D land and 3-D synthetic marine prestack data More work is needed to remedy the problems in MD for 3-D land prestack data Standard post-migration processing procedure ?

Acknowledgement Thank 1999 UTAM sponsors for their financial supportThank 1999 UTAM sponsors for their financial support