Presentation is loading. Please wait.

Presentation is loading. Please wait.

Local Migration with Extrapolated VSP Green’s Functions Xiang Xiao and Gerard Schuster Univ. of Utah.

Similar presentations


Presentation on theme: "Local Migration with Extrapolated VSP Green’s Functions Xiang Xiao and Gerard Schuster Univ. of Utah."— Presentation transcript:

1 Local Migration with Extrapolated VSP Green’s Functions Xiang Xiao and Gerard Schuster Univ. of Utah

2 Outline Motivation

3 Outline Motivation Local VSP Migration Theory

4 Outline Motivation Numerical Tests Sigsbee VSP Data Set GOM VSP Data Set

5 Outline Motivation Local VSP Migration Theory Numerical Tests Sigsbee VSP Data Set GOM VSP Data Set Conclusions

6 Motivation Problem: VSP Migration image distorted by overburden+statics Solution: Local VSP Migration

7 Outline Motivation Local VSP Migration Theory Numerical Tests Sigsbee VSP Data Set GOM VSP Data Set Conclusions

8 Theory: Standard VSP Migration direct reflection Reflections: R(g) reflection g G(x|g)*R(g)  g x G(x|s)W(  ) x Backproject Forwardproject Standard VSP migration image: m(x) = G(x|g)*R(g)  g /G(x|s)W(  ) Backprojected refl.Forwardproject. direct Src. Wavelet: W(  ) s ~ ~ G(x|g)*R(g)  g G(x|s)*W(  )*

9 Theory: Local VSP Migration direct reflection Reflections: R(g) reflection g G(x|g)*R(g)  g x Backproject direct

10 Theory: Local VSP Migration direct reflection Backproject Direct waves: D(g) Reflections: R(g) reflection g G(x|g)*R(g)  g x Backproject direct D(g) G(x|g)*D(g)  g Backprojected refl.Backproject. direct Local VSP migration image: m(x) = G(x|g)*D(g)  g G(x|g)*R(g)  g ~ ~  g G(x|g)D(g)*  g Static killer FAST 3D RTM

11 Local vs Standard VSP Migration Reflection Illumination Zones ~ ~ Local VSP migration image: m(x) G(x|g)*R(g)[  g G(x|g)*D(g)]*  g Standard VSP migration image: m(x) ~ ~ G(x|g)*R(g)  g [G(x|s)W(  Backprojected refl. Forwardprojected direct. Backproject. direct Standard VSP Reflection Illum. Zone Local VSP Reflection Illum. Zone

12 Benefits of Local VSP Migration Target oriented!Target oriented! –Only a local velocity model near the well is needed. –Salt and overburden are avoided. –Fast 3D RTM Source statics are automatically accounted for.Source statics are automatically accounted for. Liabilities of Local VSP Migration Limited illumination ZoneLimited illumination Zone Standard VSP Reflection Illum. Zone Local VSP Reflection Illum. Zone

13 Outline Motivation Local VSP Migration Theory Numerical Tests Sigsbee & Schlumberger VSP Data GOM VSP Data Set Conclusions

14 Sigsbee P-wave Velocity Model 0 Depth (km) 9.2 4500 1500 m/s -12.5 12.5 Offset (km) 279 shots 150 receivers

15 15 Local Reverse Time Migration Results 4.6 9.2 Depth (km) -33Offset (km) True modelMigration image f = fault f d d (1) (2) (3) d = diffractor Virtual well

16 Outline Motivation Local VSP Migration Theory Numerical Tests Sigsbee & Schlumberger VSP Data GOM VSP Data Set Conclusions

17 17 Depth (km) Offset (km) 10 -1212 0 Schlumberger 2D Isotropic Elastic Model 0 291 shots 287 receivers

18 Direct P PPS PSS Depth (km) Time (s) 8 0 8 VSP CSG X-component VSP CSG Z-component 4 Depth (km) 8 4 Two-component VSP Synthetic Data Set (Acknowledge VSFusion)

19 4.5 2.0 km/s (a) P-wave submodel Depth (km) 8.7 6.0 Depth (km) 8.7 6.0 Offset (km) 0 1.8 (b) P-wave background 1D model 4.5 2.0 km/s Offset (km) 0 1.8

20 Depth (km) 8.7 6.0 Offset (km) 0 1.2 Local RTM Image

21 Outline Motivation Local VSP Migration Theory Numerical Tests Sigsbee & Schlumberger VSP Data GOM VSP Data Set Conclusions

22 Depth (m) Offset (m) 4878 0 1829 0 GOM VSP Well and Source Location Source @150 m offset 2800 m 3200 m Salt 82 receivers @600 m offset @1500 m offset

23 Z-Component VSP Data Depth (m) Traveltime (s) 2652 3887 1.23.0 Salt Salt Direct P Reflected P Reverberations

24 24 150 m offset (1) (2) (3) (1) specular zone, (2) diffraction zone, (3) unreliable zone 3.3 Depth (km) 3.9 0100Offset (m) 39 receivers reflectivity

25 Local VSP Migration Images 600m and 1500 m offsets 3.3 4.4 0 600 Depth (km) Offset (m) 0600 600 m Image 1500 m Image

26 Conclusions Synthetic tests show accurate imaging around well by Local VSP. Field data results?Synthetic tests show accurate imaging around well by Local VSP. Field data results? Advantages:Advantages: Only local velocity model needed Only local velocity model needed Inexpensive target oriented RTM Inexpensive target oriented RTM Statics removed Statics removed Disadvantages:Disadvantages: Smaller illumination zone: Smaller illumination zone: Less resolution Less resolution vs G(g|x)*G(x|s)* vs G(g|x)*G(x|s)

27 Acknowledgment We thank the sponsors of the 2007 UTAM consortium for their support.We thank the sponsors of the 2007 UTAM consortium for their support. We thank VSFusion for Schlumberger modelWe thank VSFusion for Schlumberger model We thank BP for VSP DataWe thank BP for VSP Data Prev. WorkPrev. Work Yonghe Sun (UTAM report 2004) Yonghe Sun (UTAM report 2004) Jianhua Yu (UTAM report 2005) Xiao Xiang (Geophysics 2006)

28 28 Subsalt Imaging s x G(x|g) g G(x|s) m(x) ~ ~ G(x|s) Forward direct s ds * D(g|s) G(x|g)* Backward reflection g D(g|s)dg Errors in the overburden and salt body velocity model Defocusing Overview SSP  VSP Local RTMLocal RTM PSSummary

29 29 Local Reverse Time Migration s x G(x|g) g G(x|s) g’ G(x|s)= G(x|g’)* D(g’|s)dg’ Backward Direct wave g’ Local VSP Green’s function Overview SSP  VSP Local RTMLocal RTM PSSummary

30 30 m(x) ~ s ~ ds g’ G(x|g’)* D(g’|s) dg’ Backward D(g’|s) G(x|g)* D(g|s)dg Backward D(g|s) g * x1x1 (1) (2) x2x2 x3x3 (3) s g g’ Illumination Zones (1) specular zone, (2)diffraction zone, (3) unreliable zone, Theory Motivation Numerical Tests Conclusions

31 31 Depth (km) 10 0 Offset (km) -12 12 0 (a) Ray tracing direct P (c) PPS events (d) Pp events (b) PSS events Depth (km) 10 0 Offset (km) -12 12 0 Aperture by Ray Tracing Introduction Numerical Tests Conclusions Theory

32 Theory: Local VSP Migration direct reflection Direct waves: D(g) Reflections: R(g) reflection g G(x|g)*R(g)  g x Backproject Backproject Migration image: m(x) = G(x|g)*R(g)  g G(x|g)W(  ) Backprojected refl.Forwardproject. direct G(x|g)W(  ) direct D(g)

33 Sigsbee P-wave Velocity Model 0 Depth (km) 11.0 4500 1500 m/s 12.5 Offset (km) 279 shots 150 receivers287 recs 291 recs

34 34 P-to-S ratio = 2.7 Velocity Profile S Wave P Wave Depth (m) 0 4500 050000 2800 m 3200 m Salt Incorrect velocity model P-to-S ratio = 1.6 Introduction Numerical Tests Conclusions Velocity (m/s) Theory

35 35 X-Component VSP Data Depth (m) Traveltime (s) 2652 3887 1.23.0 Salt Direct P Reflected P ReverberationsDirect S Introduction Numerical Tests Conclusions Theory

36 36 150 m offset 3.3 3.9 0100 Depth (km) Offset (m) 0100 Offset (m) Without deconvolution With deconvolution Introduction Numerical Tests Conclusions Theory

37 Depth (km) 13 0 VSP CSG VSP CSG 013 Time (s)


Download ppt "Local Migration with Extrapolated VSP Green’s Functions Xiang Xiao and Gerard Schuster Univ. of Utah."

Similar presentations


Ads by Google