1 CALICE simulation results G.Villani 06 Cell size: 50 x 50  m 2 21 hits simulated, 5  m pitch 121 extrapolated hits / pixel 961 extrapolated hits /

Slides:



Advertisements
Similar presentations
Trapping in silicon detectors G. Kramberger Jožef Stefan Institute, Ljubljana Slovenia G. Kramberger, Trapping in silicon detectors, Aug , 2006,
Advertisements

D. Contarato Outline 12 November 2002, MAPS Meeting Introduction: issues and questions Simulated structure: geometry and parameters Simulation results:
November 7th 2002Jim Libby (CERN/SLAC)1 Opposite Polarity Signals in Wide Pitch Sensors Jim Libby (CERN/SLAC) Introduction to the R&D in LHCb The test-beam.
1 RTS effect on fake hit rate in Mimostar3 Xiangming Sun L. Greiner, M. Szelezniak H. Matis T. Stezelberger C. Vu H. Wieman Lawrence Berkeley National.
M.Mevius Open and hidden beauty production in 920 GeV proton –nucleus collisions at HERA-B M.Mevius DESY.
Solar Cell Operation Key aim is to generate power by:
1 Timing in HCAL Digitization Rick Wilkinson. 2 Timing We should try to maximize charge in time bin 5, for high energy (no time slew) We should try to.
G.Villani jan. 071 CALICE pixel Deep P-Well results Nwell 16 μm x 16 μm P-well 17 μm x 17 μm Collecting diodes 3.6 μm x 3.6 μm Bias: NWell 3.5V Diodes:
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory 1 ECFA 2006, Valencia 1 MAPS-based ECAL Option for ILC ECFA 2006, Valencia, Spain Konstantin.
G.Villani march 071 CALICE pixel Deep P-Well results Nwells P-well 3μm guard ring Diodes [3.6,1.8,0.9] x[3.6,1.8,0.9]μm 2 Bias: NWell 1.8/1V Diodes: 1.5V.
Thursday, May 10th, 2007 Calice Collaboration meeting --- A.-M. Magnan --- IC London 1 Progress Report on the MAPS ECAL R&D on behalf of the MAPS group:
November 30th, 2006MAPS meeting - Anne-Marie Magnan - Imperial College London 1 MAPS simulation Application of charge diffusion on Geant4 simulation and.
Tera-Pixel APS for CALICE Progress 20 th October 2006 [JC+RT]
Tera-Pixel APS for CALICE Progress 13 th November 2006.
1 CALICE D4 simulation results G.Villani feb. 06 Cell size: 25 x 25  m 2 Epitaxial thickness: 20  m Diode location: S4 Diode size: 1.5 x 1.5  m 2 Cell.
Dec 2005Jean-Sébastien GraulichSlide 1 Improving MuCal Design o Why we need an improved design o Improvement Principle o Quick Simulation, Analysis & Results.
G.Villani jan. 071 CALICE pixel Deep P-Well results Nwell ≈ 900 μm 2 P-well 1μm ring gap Collecting diodes 3.6 x 3.6 μm 2 Bias: NWell 3.5V Diodes: 1.5V.
TeraPixel APS for CALICE Progress meeting 9th Dec 2005 Jamie Crooks, Microelectronics/RAL.
1 CALICE simulation results G.Villani oct. 06 Progress on CALICE MAPS detector simulations: Results for 1.8 x 1.8 µm 2 Discussions & conclusions Next step.
G.Villani jan. 071 CALICE pixel Deep P-Well results Nwell ≈ 900 μm 2 P-well 1μm ring gap Collecting diodes 3.6 x 3.6 μm 2 Bias: NWell 3.5V Diodes: 1.5V.
Rutherford Appleton Laboratory Particle Physics Department A Novel CMOS Monolithic Active Pixel Sensor with Analog Signal Processing and 100% Fill factor.
STS Simulations Anna Kotynia 15 th CBM Collaboration Meeting April , 2010, GSI 1.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
First Results from Cherwell, a CMOS sensor for Particle Physics By James Mylroie-Smith
Monte Carlo simulation of the imaging properties of a scintillator- coated X-ray pixel detector M. Hjelm * B. Norlin H-E. Nilsson C. Fröjdh X. Badel Department.
1 Nick Sinev LCWS08, University of Illinois at Chicago November 18, 2008 Status of the Chronopixel project J. E. Brau, N. B. Sinev, D. M. Strom University.
11 th RD50 Workshop, CERN Nov Results with thin and standard p-type detectors after heavy neutron irradiation G. Casse.
Test ISIS1 P-well device on board V1.4 RAL Z. Zhang & K. Stefanov.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
VI th INTERNATIONAL MEETING ON FRONT END ELECTRONICS, Perugia, Italy A. Dorokhov, IPHC, Strasbourg, France 1 NMOS-based high gain amplifier for MAPS Andrei.
1 Radiation damage effects in Monolithic Active Pixel Sensors Implemented in an 0.18µm CMOS process Dennis Doering, Goethe-University Frankfurt am Main.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Specifications & motivation 2  Lowering integration time would significantly reduce background  Lowering power would significantly reduce material budget.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
Tera-Pixel APS for CALICE Jamie Crooks, Microelectronics/RAL SRAM Column Concept.
First tests of CHERWELL, a Monolithic Active Pixel Sensor. A CMOS Image Sensor (CIS) using 180 nm technology James Mylroie-Smith Queen Mary, University.
1 Radiation Hardness of Monolithic Active Pixel Sensors Dennis Doering, Goethe-University Frankfurt am Main on behalf of the CBM-MVD-Collaboration Outline.
PHASE-1B ACTIVITIES L. Demaria – INFN Torino. Introduction  The inner layer of the Phase 1 Pixel detector is exposed to very high level of irradiation.
Charge Collection and Trapping in Epitaxial Silicon Detectors after Neutron-Irradiation Thomas Pöhlsen, Julian Becker, Eckhart Fretwurst, Robert Klanner,
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 2 Paul Dauncey Imperial College London.
Status of photon sensor study at Niigata University -- SiPM and MPPC -- Photon sensor mini workshop 05/9/16 University Niigata University.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
CMOS MAPS with pixel level sparsification and time stamping capabilities for applications at the ILC Gianluca Traversi 1,2
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Siena October th Topical Seminar on Innovative Particle and.
LHCb Vertex Detector and Beetle Chip
A. Dorokhov, IPHC, Strasbourg, France 1 Description of pixel designs in Mimosa22 Andrei Dorokhov Institut Pluridisciplinaire Hubert Curien (IPHC) Strasbourg,
Custom mechanical sensor support (left and below) allows up to six sensors to be stacked at precise positions relative to each other in beam The e+e- international.
Tera-Pixel APS for CALICE Progress 30 th November 2006.
Oct Monolithic pixel detector Update  One chip combining both sensor and read-out – source of ionization e- : epitaxial layer of chip – e- collected.
Tera-Pixel APS for CALICE Progress meeting, 6 th June 2006 Jamie Crooks, Microelectronics/RAL.
4 Jun 2008Paul Dauncey1 Crosstalk and laser results Paul Dauncey, Anne-Marie Magnan, Matt Noy.
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
Monolithic and Vertically Integrated Pixel Detectors, CERN, 25 th November 2008 CMOS Monolithic Active Pixel Sensors R. Turchetta CMOS Sensor Design Group.
STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 1 Improved radiation tolerance of MAPS using a depleted epitaxial layer.
G.Villani Aug. 071 CALICE pixel Laser testing update Laser MIP equivalent calibration update Si detector coupled to low noise CA + differentiator (no shaper)
Konstantin Stefanov 05/10/ Detecting elements for the CALICE MAPS design How does the collected charge depend on 1.Diode size? 2.Diode position with.
1 An X-ray fluorescence spectrometer using CMOS-sensors AD AD vanced MO MO nolithic S S ensors for Supported by BMBF (06FY9099I and 06FY7113I), HIC for.
Presented by Renato Turchetta CCLRC - RAL 7 th International Conference on Position Sensitive Detectors – PSD7 Liverpool (UK), September 2005 R&D.
Design and Characterization of a Novel, Radiation-Resistant Active Pixel Sensor in a Standard 0.25 m CMOS Technology P.P. Allport, G. Casse, A. Evans,
Integration and alignment of ATLAS SCT
First results on irradiated OVERMOS1 HR CMOS for HEP applications
Detecting elements for the CALICE MAPS design
Mimoroma2 MAPS chip: all NMOS on pixel sparsification architecture
Simulation of signal in irradiated silicon detectors
Charge diffusion model (again)
PIXEL Slow Simulation Status Report
Enhanced Lateral Drift (ELAD) sensors
CALICE simulation results G.Villani 06
Stefano Zucca, Lodovico Ratti
Presentation transcript:

1 CALICE simulation results G.Villani 06 Cell size: 50 x 50  m 2 21 hits simulated, 5  m pitch 121 extrapolated hits / pixel 961 extrapolated hits / cell Pixel layout Cell  m 3.5x3.5  m 2 0.9x0.9  m 2 Simulated cell layout

2 CALICE simulation results G.Villani 06 Σ diodes Collected charge vs (x,y) 0V 1.5 V 3.3 V Bias Diode : 1.5V fixed Nwell: 3.3V Pwell: 0V Subs: float Epitaxial thickness: 12  m

3 1/S Central cell Q coll (x,y) sample CALICE simulation results G.Villani 06 Error in pixel coverage e-e- Comparator’s threshold: 50 e - Comparator’s threshold: 75 e - Comparator’s threshold: 100 e - Comparator’s threshold: 125 e - Comparator’s threshold: 150 e - Comparator’s threshold: 175 e - Comparator’s threshold: 200 e - e - threshold Pixel coverage (e - threshold)  e -

4 Charge collected by central Nwell CALICE simulation results G.Villani 06 t ≈38 ns≈25 ns ≈3 ns ≈300 ns  Charge lost by central N Well around 620 e - 0.1*

5 Diode charge collection time CALICE simulation results G.Villani QT(s)  Collection time  300 ns for pixel coverage  Reduction of collection time for ‘smaller’ pixels: 350 ns300 ns 250 ns

6 Minimum Σ charge signal ≈ 100 e - Optimal threshold ≈ 140 e- Collection time ≈ 300 ns for pixel coverage Conclusions CALICE simulation results G.Villani 06 Increase in minimum collected charge requires to increase the collecting surface:  Increase diode size ( 1.8  m in progress)  Increase the number of diodes Ultimately, the S/N for both approaches dictates the optimum solution Collection time can be decreased by reducing inter diodes distances: probably more effective with increase number of diodes rather than surfaces Likelihood of consecutive hits on the same pixel Optimal coverage examples