HI in Galaxies at Redshifts 0.1 to 1.0: Current and Future Observations Using Optical Redshifts for HI Coadding Melbourne 2008 Philip Lah.

Slides:



Advertisements
Similar presentations
Jeroen Stil Department of Physics & Astronomy University of Calgary Stacking of Radio Surveys.
Advertisements

CO imaging surveys of nearby galaxies Nario Kuno Nobeyama Radio Observatory.
MeerKAT Large Survey Projects SAAO Board, Roy Booth (SA SKA Project)
HI Stacking: Past, Present and Future HI Pathfinder Workshop Perth, February 2-4, 2011 Philip Lah.
Chapter 19: Between the Stars: Gas and Dust in Space.
Astronomy and the Electromagnetic Spectrum
NEUTRAL HYDROGEN Frank Briggs RSAA and ATNF z = 8 z = 0.
Deep Neutral Hydrogen Surveys with the Arecibo 305-m Telescope – the Arecibo Galaxy Environment Survey Robert Minchin NAIC Arecibo Observatory.
The Cosmic Evolution of Neutral Atomic Hydrogen Gas University of Sydney Colloquium 27 November 2014 Philip Lah.
Probing the field of Radio Astronomy with the SKA and the Hartebeesthoek Radio Observatory: An Engineer’s perspective Sunelle Otto Hartebeesthoek Radio.
HI in galaxies at intermediate redshifts Jayaram N Chengalur NCRA/TIFR Philip Lah (ANU) Frank Briggs (ANU) Matthew Colless (AAO) Roberto De Propris (CTIO)
HI from z ~ 0 – 1 with FAST D.J. Pisano West Virginia University NRAO.
SKA Science Measuring Variations in the Fundamental Constants with the SKA Steve Curran School of Physics School of Physics University of New South Wales.
H OPCAT, 6dFGS & Star Formation Rates Marianne T. Doyle Ph.D. Project.
The faint end …. …. in neutral gas. “luminous”
What good are low frequencies? HI, neutral hydrogen, H 0, atomic hydrogen high redshifts and early times…. USS, GPS, … “enabling technologies” …multi-beaming,
The Evolution of Gas in Galaxies End of Thesis Colloquium Philip Lah.
The HI gas content of galaxies around Abell 370, a galaxy cluster at z = 0.37 International SKA Forum 2010 Philip Lah A New Golden Age for Radio Astronomy.
Measuring the Gas in Galaxies in the Distant Past Philip Lah Too late. Here comes the SKA.
Eric M. Wilcots University of Wisconsin-Madison.  How and when did galaxies accrete their gas?  Where and when did/do galaxies stop accreting gas? 
John Salzer, Nyla Tresser, Samantha Stevenson & Hart Webb (Wesleyan University) Jessica Rosenberg (Harvard/Smithsonian CfA) Optical Properties of the HI-selected.
Neutral Hydrogen Gas in Abell 370, a Galaxy Cluster at z = 0.37 NCRA 17 th July 2008 Philip Lah.
Star-Formation in Close Pairs Selected from the Sloan Digital Sky Survey Overview The effect of galaxy interactions on star formation has been investigated.
Exploring the Stellar Populations of Early-Type Galaxies in the 6dF Galaxy Survey Philip Lah Honours Student h Supervisors: Matthew Colless Heath Jones.
Neutral Hydrogen Gas in Galaxies at Moderate Redshifts: Current and Future Observations University of Cape Town 2008 Philip Lah.
The HI Universe: The ALFA and the Omega(HI) Patricia Henning Cosmic Web: galaxies and the large-scale structure Socorro NM, 16 May 2008.
HI in Galaxies at Redshifts 0.1 to 1.0: Current and Future Observations Using Optical Redshifts for HI Coadding Deep Surveys of the Radio Universe with.
Calibration of the SDSS Spectroscopic Line Width Scaling Relations Calibration of the SDSS Spectroscopic Line Width Scaling Relations Barbara Catinella.
The Future of the Past Harvard University Astronomy 218 Concluding Lecture, May 4, 2000.
HI at moderate redshifts Philip Lah Science with MIRA workshop Research School of Astronomy & Astrophysics Mount Stromlo Observatory.
Recycling the Intergalactic Medium
Discovery of Galaxy Clusters Around Redshift 1 Deborah Haarsma, Calvin GLCW, June 1, 2007.
The Evolution of Stars and Gas in Galaxies PhD Thesis Proposal Philip Lah.
“Damped Lyman Alpha Systems” by Wolfe, Arthur M., Gawiser, E. and Prochaska, Jason X. Jean P. Walker Rutgers University Galaxy Formation Seminar.
The Evolution of Stars and Gas in Galaxies: PhD Midterm Philip Lah A journey with noise and astrometry.
HI in galaxies from z = to z = 0.2 Thijs van der Hulst
Chapter 11: The Interstellar Medium Region in the Constellation Orion named the Orion Nebula which is the closest star formation region to us. Jets and.
Neutral Hydrogen Gas in Star Forming Galaxies at z=0.24 Philip Lah Frank Briggs (ANU) Jayaram Chengalur (NCRA) Matthew Colless (AAO) Roberto De Propris.
Neutral Hydrogen Gas in Star Forming Galaxies at z=0.24 HI Survival Through Cosmic Times Conference Philip Lah.
Star Formation Rate and Neutral Gas Content as a Function of Redshift and Environment Collaborators: Mike Pracy, Jayaram Chengalur, Frank Briggs, Matthew.
A hot topic: the 21cm line I Benedetta Ciardi MPA.
30/6/09 Unity of the Universe 1. Michael Drinkwater for the team Australia: Blake, Brough, Colless, Couch, Croom, Davis, Glazebrook, Jelliffe, Jurek,
HI absorption-line science: exciting opportunities with ASKAP- 12 Elaine Sadler University of Sydney / CAASTRO on behalf of the ASKAP FLASH team 5 August.
The Cosmic Evolution of Neutral Atomic Hydrogen Gas AAO Colloquium 5th February 2015 Philip Lah.
Large Area Survey of Lyman Alpha Emitters Zheng Yale Center for Astronomy and Astrophysics Yale/WIYN One Degree Imager Survey Workshop Oct 3rd, 2009.
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
Gas Properties of Dwarf Galaxies Gas Properties of Dwarf Galaxies Ayesha Begum (IOA, Cambridge) Faint (M B >-14.5) Irregular Galaxies GMRT Survey Results.
Molecular Gas and Dust in SMGs in COSMOS Left panel is the COSMOS field with overlays of single-dish mm surveys. Right panel is a 0.3 sq degree map at.
The KAT/SKA project and Related Research Catherine Cress (UKZN/KAT/UWC)
RADIO OBSERVATIONS IN VVDS FIELD : PAST - PRESENT - FUTURE P.Ciliegi(OABo), Marco Bondi (IRA) G. Zamorani(OABo), S. Bardelli (OABo) + VVDS-VLA collaboration.
Star Formation & the Morphology-Density Relation in the Local Universe Marianne T. Doyle Ph.D. Project.
H OPCAT, 6dFGS & Star Formation Rates Marianne T. Doyle Ph.D. Project.
Extragalactic Absorption Lines Observed from Arecibo Chris Salter (National Astronomy & Ionosphere Center, Arecibo Observatory, Puerto Rico)
Neutral gas in galaxies: Synergies between ALMA and ASKAP Elaine M. Sadler.
Star Formation Efficiency and Environment Marianne T. Doyle *1, David J. Rohde 1, Michael J. Drinkwater 1, Mike Read 2, Baerbel S Koribalski 3 and The.
Radio galaxy Elliptical Fanaroff-Riley type I “Misaligned” BL Lac (~ 60  ) Distance 3.5 Mpc Parameter Value  (J2000) 201   (J2000) -43 
December 17, 2008 The EVLA Vision Galaxies Through CosmicTime 1 Microjansky Radio Sources: AGN or Star Formation? Ken Kellermann & EdFomalont NRAO in collaboration.
The star formation history of the local universe A/Prof. Andrew Hopkins (AAO) Prof. Joss Bland-Hawthorn (USyd.) & the GAMA Collaboration Madusha L.P. Gunawardhana.
From Avi Loeb reionization. Quest to the Highest Redshift.
Emission Line Galaxy Targeting for BigBOSS Nick Mostek Lawrence Berkeley National Lab BigBOSS Science Meeting Novemenber 19, 2009.
Plan of the Talk What is AGES The AGES volume High density environments –Groups and clusters Low density environments –Galaxy pairs, isolated galaxies.
Foreground Contamination and the EoR Window Nithyanandan Thyagarajan N. Udaya Shankar Ravi Subrahmanyan (Raman Research Institute, Bangalore)
GBT Future Instrumentation Workshop Fixing the frequency coverage hole in C-Band Jagadheep D. Pandian Cornell University.
Lyman Alpha Spheres from the First Stars observed in 21 cm Xuelei Chen (Beijing) Jordi Miralda Escudé (IEEC, Barcelona).
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Competitive Science with the WHT for Nearby Unresolved Galaxies Reynier Peletier Kapteyn Astronomical Institute Groningen.
Ming Zhu FAST Science Group General Technical Specification Spherical reflector : Radius ~ 300m, Aperture ~ 500m, Opening angle 110~120°
An Arecibo HI 21-cm Absorption Survey of Rich Abell Clusters
Optical Properties HI-selected Galaxies of
NEUTRAL HYDROGEN Frank Briggs RSAA and ATNF z = 8 z = 0.
Presentation transcript:

HI in Galaxies at Redshifts 0.1 to 1.0: Current and Future Observations Using Optical Redshifts for HI Coadding Melbourne 2008 Philip Lah

Collaborators: Michael Pracy (ANU) Frank Briggs (ANU) Jayaram Chengalur (NCRA) Matthew Colless (AAO) Roberto De Propris (CTIO)

Talk Outline Introduction Evolution in clusters & star formation rate density vs z HI 21cm emission & the HI coadding technique Current Observations with the HI coadding technique HI in star forming galaxies at z = 0.24 HI in Abell 370, a galaxy cluster at z = 0.37 Future Observations with SKA pathfinders using ASKAP and WiggleZ using MeerKAT and zCOSMOS

Evolution in Galaxy Clusters

Galaxy Cluster: Coma

Butcher-Oemler Effect

The Cosmic Star Formation Rate Density

SFRD vs z Hopkins 2004

SFRD vs time Hopkins 2004

HI Gas and Star Formation Neutral atomic hydrogen gas cloud (HI) molecular gas cloud (H 2 ) star formation

The Cosmic Neutral Gas Density

The Cosmic Gas Density vs. Redshift Zwaan et al HIPASS HI 21cm Rao et al DLAs from MgII absorption Prochaska et al DLAs

The Cosmic Gas Density vs. Redshift Zwaan et al HIPASS HI 21cm Rao et al DLAs from MgII absorption Prochaska et al DLAs

HI 21 cm Emission

Neutral atomic hydrogen creates 21 cm radiation proton electron

Neutral atomic hydrogen creates 21 cm radiation

photon

Neutral atomic hydrogen creates 21 cm radiation

HI 21cm emission HI 21 cm emission decay half life ~10 million years (3  s) 1 M   2.0  g  1.2  atoms of hydrogen atoms total HI gas in galaxies ~ 10 7 to M  HI emission ~4  to 4  photons per second HI 21 cm luminosity of ~4  to 4  ergs s -1 For comparison, in star forming galaxies: luminosity of H  emission ~3  to 3  ergs s -1 HI 21 cm emission ~10 6 times less power than H  emission

HI 21cm emission HI 21 cm emission decay half life ~10 million years (3  s) 1 M   2.0  g  1.2  atoms of hydrogen atoms total HI gas in galaxies ~ 10 7 to M  HI emission ~4  to 4  photons per second HI 21 cm luminosity of ~4  to 4  ergs s -1 For comparison, in star forming galaxies: luminosity of H  emission ~3  to 3  ergs s -1 HI 21 cm emission ~10 6 times less power than H  emission

HI 21cm emission HI 21 cm emission decay half life ~10 million years (3  s) 1 M   2.0  g  1.2  atoms of hydrogen atoms total HI gas in galaxies ~ 10 7 to M  HI emission ~4  to 4  photons per second HI 21 cm luminosity of ~4  to 4  ergs s -1 For comparison, in star forming galaxies: luminosity of H  emission ~3  to 3  ergs s -1 HI 21 cm emission ~10 6 times less power than H  emission

HI 21cm emission HI 21 cm emission decay half life ~10 million years (3  s) 1 M   2.0  g  1.2  atoms of hydrogen atoms total HI gas in galaxies ~ 10 7 to M  HI emission ~4  to 4  photons per second HI 21 cm luminosity of ~4  to 4  ergs s -1 For comparison, in star forming galaxies: luminosity of H  emission ~3  to 3  ergs s -1 HI 21 cm emission ~10 6 times less power than H  emission

HI 21cm emission HI 21 cm emission decay half life ~10 million years (3  s) 1 M   2.0  g  1.2  atoms of hydrogen atoms total HI gas in galaxies ~ 10 7 to M  HI emission ~4  to 4  photons per second HI 21 cm luminosity of ~4  to 4  ergs s -1 For comparison, in star forming galaxies: luminosity of H  emission ~3  to 3  ergs s -1 HI 21 cm emission ~10 6 times less power than H  emission

HI 21cm emission HI 21 cm emission decay half life ~10 million years (3  s) 1 M   2.0  g  1.2  atoms of hydrogen atoms total HI gas in galaxies ~ 10 7 to M  HI emission ~4  to 4  photons per second HI 21 cm luminosity of ~4  to 4  ergs s -1 For comparison, in star forming galaxies: luminosity of H  emission ~3  to 3  ergs s -1 HI 21 cm emission ~10 6 times less power than H  emission

HI 21cm emission HI 21 cm emission decay half life ~10 million years (3  s) 1 M   2.0  g  1.2  atoms of hydrogen atoms total HI gas in galaxies ~ 10 7 to M  HI emission ~4  to 4  photons per second HI 21 cm luminosity of ~4  to 4  ergs s -1 For comparison, in star forming galaxies: luminosity of H  emission ~3  to 3  ergs s -1 HI 21 cm emission ~10 6 times less power than H  emission

HI 21cm Emission at High Redshift

HI 21cm emission at z > 0.1 single galaxy at z =  WSRT 200 hours (Zwaan et al. 2001, Science, 293, 1800) single galaxy at z =  VLA ~80 hours (Verheijen et al. 2004,in IAU Symposium Vol 195, p. 394) two galaxy clusters at z = and z =  WSRT 420 hours  42 galaxies detected  HI gas masses 5  10 9 to 4  M  (Verheijen et al. 2007, ApJL, 668, L9) galaxies with redshifts z = 0.17 to 0.25 observed with Arecibo  detected 26 from 33 observed  HI gas masses (2 to 6)  M  (Catinella et al. 2007, in IAU Symposium Vol 235, p. 39)

HI 21cm emission at z > 0.1 single galaxy at z =  WSRT 200 hours (Zwaan et al. 2001, Science, 293, 1800) single galaxy at z =  VLA ~80 hours (Verheijen et al. 2004,in IAU Symposium Vol 195, p. 394) two galaxy clusters at z = and z =  WSRT 420 hours  42 galaxies detected  HI gas masses 5  10 9 to 4  M  (Verheijen et al. 2007, ApJL, 668, L9) galaxies with redshifts z = 0.17 to 0.25 observed with Arecibo  detected 26 from 33 observed  HI gas masses (2 to 6)  M  (Catinella et al. 2007, in IAU Symposium Vol 235, p. 39)

HI 21cm emission at z > 0.1 single galaxy at z =  WSRT 200 hours (Zwaan et al. 2001, Science, 293, 1800) single galaxy at z =  VLA ~80 hours (Verheijen et al. 2004,in IAU Symposium Vol 195, p. 394) two galaxy clusters at z = and z =  WSRT 420 hours  42 galaxies detected  HI gas masses 5  10 9 to 4  M  (Verheijen et al. 2007, ApJL, 668, L9) galaxies with redshifts z = 0.17 to 0.25 observed with Arecibo  detected 26 from 33 observed  HI gas masses (2 to 6)  M  (Catinella et al. 2007, in IAU Symposium Vol 235, p. 39)

HI 21cm emission at z > 0.1 single galaxy at z =  WSRT 200 hours (Zwaan et al. 2001, Science, 293, 1800) single galaxy at z =  VLA ~80 hours (Verheijen et al. 2004,in IAU Symposium Vol 195, p. 394) two galaxy clusters at z = and z =  WSRT 420 hours  42 galaxies detected  HI gas masses 5  10 9 to 4  M  (Verheijen et al. 2007, ApJL, 668, L9) galaxies with redshifts z = 0.17 to 0.25 observed with Arecibo  detected 26 from 33 observed  HI gas masses (2 to 6)  M  (Catinella et al. 2007, in IAU Symposium Vol 235, p. 39)

Coadding HI signals

RA DEC Radio Data Cube Frequency HI redshift

Coadding HI signals RA DEC Radio Data Cube Frequency HI redshift positions of optical galaxies

Coadding HI signals frequency flux

Coadding HI signals frequency flux z2 z1 z3

Coadding HI signals frequency flux z2 z1 z3 velocity HI signal

Current Observations - HI coadding

Giant Metrewave Radio Telescope

Anglo-Australian Telescope

multi-object, fibre fed spectrograph 2dF/AAOmega instrument

The Fujita galaxies H  emission galaxies at z = 0.24

The Subaru Telescope

The Surprime-cam filters H  at z = 0.24

Narrowband Filter: Hα detection

The Fujita Galaxies Subaru Field 24’ × 30’ narrow band imaging  Hα emission at z = 0.24 (Fujita et al. 2003, ApJL, 586, L115) 348 Fujita galaxies 121 redshifts using AAT GMRT ~48 hours on field DEC RA

SFRD vs z - Fujita Hopkins 2004 Fujita et al. 2003

Fujita galaxies - B filter Thumbnails 10’’ sq Ordered by H  luminosity

Fujita galaxies - B filter Thumbnails 10’’ sq Ordered by H  luminosity

Coadded HI Spectrum

HI spectrum all Fujita galaxies neutral hydrogen gas measurement using 121 redshifts - weighted average M HI = (2.26 ± 0.90) ×10 9 M  raw binned

The Cosmic Neutral Gas Density

my new point The Cosmic Gas Density vs. Redshift

my new point Cosmic Neutral Gas Density vs. Time

Galaxy HI mass vs Star Formation Rate

Galaxy HI Mass vs Star Formation Rate HIPASS & IRAS data z ~ 0 Doyle & Drinkwater 2006

HI Mass vs Star Formation Rate at z = 0.24 line from Doyle & Drinkwater 2006 all 121 galaxies

HI Mass vs Star Formation Rate at z = 0.24 line from Doyle & Drinkwater bright L(Hα) galaxies 42 medium L(Hα) galaxies 37 faint L(Hα) galaxies

Abell 370 a galaxy cluster at z = 0.37

Abell 370, a galaxy cluster at z = 0.37 large galaxy cluster of order same size as Coma optical imaging ANU 40 inch telescope spectroscopic follow- up with the AAT GMRT ~34 hours on cluster

Abell 370 – R band images Thumbnails 10’’ sq 324 galaxies with useful redshifts (z~0.37) Ordered by observed R band magnitudes

Abell 370 galaxy cluster 324 galaxies 105 blue (B-V  0.57) 219 red (B-V > 0.57) Abell 370 galaxy cluster

3σ extent of X-ray gas R 200  radius at which cluster 200 times denser than the general field

Galaxy Sizes I want galaxies to be unresolved. For the Fujita galaxies I used an estimate of the HI size from the optical properties of spiral and irregular field galaxies and the smoothed radio data. Major Complication!! The Abell 370 galaxies are a mixture of early and late types in a variety of environments.

Galaxy Sizes I want galaxies to be unresolved. For the Fujita galaxies I used an estimate of the HI size from the optical properties of spiral and irregular field galaxies and the smoothed radio data. Major Complication!! The Abell 370 galaxies are a mixture of early and late types in a variety of environments.

HI mass 324 galaxies 219 galaxies 105 galaxies 94 galaxies 168 galaxies 156 galaxies 104 galaxies 220 galaxies

HI mass 324 galaxies 219 galaxies 105 galaxies 94 galaxies 168 galaxies 156 galaxies 104 galaxies 220 galaxies

HI mass 324 galaxies 219 galaxies 105 galaxies 94 galaxies 168 galaxies 156 galaxies 104 galaxies 220 galaxies

HI mass 324 galaxies 219 galaxies 105 galaxies 94 galaxies 168 galaxies 156 galaxies 104 galaxies 220 galaxies

HI mass 324 galaxies 219 galaxies 105 galaxies 94 galaxies 168 galaxies 156 galaxies 104 galaxies 220 galaxies

HI all spectrum all Abell 370 galaxies neutral hydrogen gas measurement using 324 redshifts – large smoothing M HI = (6.6 ± 3.5) ×10 9 M 

HI Flux – All Galaxies

HI blue outside x-ray gas blue galaxies outside of x-ray gas measurement of neutral hydrogen gas content using 94 redshifts – large smoothing M HI = (23.0 ± 7.7) ×10 9 M 

HI Flux – Blue Galaxies Outside X-ray Gas

Comparisons with the Literature

Average HI Mass Comparisons with Coma

Abell 370 and Coma Comparison 220 galaxies 324 galaxies 104 galaxies

Abell 370 and Coma Comparison 220 galaxies 324 galaxies 104 galaxies

Abell 370 and Coma Comparison 220 galaxies 324 galaxies 104 galaxies

HI Density Comparisons

HI density field

HI density - inner regions of clusters within 2.5 Mpc of cluster centers

HI Mass to Light Ratios

HI mass to optical B band luminosity for Abell 370 galaxies Uppsala General Catalog Local Super Cluster (Roberts & Haynes 1994)

HI Mass to Light Ratios HI mass to optical B band luminosity for Abell 370 galaxies Uppsala General Catalog Local Super Cluster (Roberts & Haynes 1994)

Galaxy HI mass vs Star Formation Rate

Galaxy HI Mass vs Star Formation Rate HIPASS & IRAS data z ~ 0 Doyle & Drinkwater 2006

HI Mass vs Star Formation Rate in Abell 370 all 168 [OII] emission galaxies line from Doyle & Drinkwater 2006

HI Mass vs Star Formation Rate in Abell blue [OII] emission galaxies line from Doyle & Drinkwater red [OII] emission galaxies

Future Observations - HI coadding

ASKAP

MeerKAT South African SKA pathfinder

ASKAP and MeerKAT parameters ASKAPMeerKAT Number of Dishes 4580 Dish Diameter 12 m Aperture Efficiency 0.8 System Temp. 35 K30 K Frequency range 700 – 1800 MHz700 – MHz Instantaneous bandwidth 300 MHz512 MHz Field of View: at 1420 MHz (z = 0) at 700 MHz (z = 1) 30 deg deg deg 2 Maximum Baseline Length 8 km10 km

ASKAP and MeerKAT parameters ASKAPMeerKAT Number of Dishes 4580 Dish Diameter 12 m Aperture Efficiency 0.8 System Temp. 35 K30 K Frequency range 700 – 1800 MHz700 – MHz Instantaneous bandwidth 300 MHz512 MHz Field of View: at 1420 MHz (z = 0) at 700 MHz (z = 1) 30 deg deg deg 2 Maximum Baseline Length 8 km10 km

ASKAP and MeerKAT parameters ASKAPMeerKAT Number of Dishes 4580 Dish Diameter 12 m Aperture Efficiency 0.8 System Temp. 35 K30 K Frequency range 700 – 1800 MHz700 – MHz Instantaneous bandwidth 300 MHz512 MHz Field of View: at 1420 MHz (z = 0) at 700 MHz (z = 1) 30 deg deg deg 2 Maximum Baseline Length 8 km10 km z = 0.4 to 1.0 in a single observation z = 0.2 to 1.0 in a single observation

HI detections ASKAP 100 hr

HI detections ASKAP 1000 hr

HI detections MeerKAT 100 hr

HI detections MeerKAT 1000 hr

What I could do with the SKA pathfinders using optical coadding of HI if you gave them to me TODAY.

WiggleZ and zCOSMOS WiggleZzCOSMOS Instrument/TelescopeAAOmega on the AATVIMOS on the VLT Target Selection ultraviolet using the GALEX satellite optical I band I AB < 22.5 Survey Area 1000 deg 2 total 7 fields minimum size of ~100 deg 2 COSMOS field single field ~2 deg 2 Primary Redshift Range 0.5 < z < < z < 1.2 Survey Timeline2006 to to 2008 n z by survey end176,00020,000 n z in March 2008~62,000~10,000

WiggleZ and zCOSMOS WiggleZzCOSMOS Instrument/TelescopeAAOmega on the AATVIMOS on the VLT Target Selection ultraviolet using the GALEX satellite optical I band I AB < 22.5 Survey Area 1000 deg 2 total 7 fields minimum size of ~100 deg 2 COSMOS field single field ~2 deg 2 Primary Redshift Range 0.5 < z < < z < 1.2 Survey Timeline2006 to to 2008 n z by survey end176,00020,000 n z in March 2008~62,000~10,000

WiggleZ and zCOSMOS WiggleZzCOSMOS Instrument/TelescopeAAOmega on the AATVIMOS on the VLT Target Selection ultraviolet using the GALEX satellite optical I band I AB < 22.5 Survey Area 1000 deg 2 total 7 fields minimum size of ~100 deg 2 COSMOS field single field ~2 deg 2 Primary Redshift Range 0.5 < z < < z < 1.2 Survey Timeline2006 to to 2008 n z by survey end176,00020,000 n z in March 2008~62,000~10,000

WiggleZ and ASKAP

WiggleZ field data as of March 2008 z = 0.1 to 1.0 ASKAP beam size Diameter 6.2 degrees Area 30 deg 2 ~10 degrees across

ASKAP & WiggleZ 100hrs n z = 5975

ASKAP & WiggleZ 100hrs n z = 5975

ASKAP & WiggleZ 100hrs n z = 5975

ASKAP & WiggleZ 1000hrs n z = 5975

zCOSMOS and MeerKAT

zCOSMOS field data as of March 2008 z = 0.1 to 1.0 MeerKAT beam size at 1420 MHz z = 0 MeerKAT beam size at 1000 MHz z = 0.4 ~1.3 degrees across

MeerKAT & zCOSMOS 100hrs n z = 7615

MeerKAT & zCOSMOS 100hrs n z = 7615

MeerKAT & zCOSMOS 100hrs n z = 7615

MeerKAT & zCOSMOS 1000hrs n z = 7615

Conclusion

can use coadding with optical redshifts to make measurement of the HI 21 cm emission from galaxies at redshifts z > 0.1 the measured cosmic neutral gas density at z = 0.24 is consistent with that from damped Lyα galaxy cluster Abell 370 at z = 0.37 has significantly more gas than similar clusters at z ~ 0, possibly as much as 10 times more gas the SKA pathfinders ASKAP and MeerKAT can measure significant amounts of HI 21 cm emission out to z = 1.0 using the coadding technique with existing redshift surveys Conclusion