Presentation is loading. Please wait.

Presentation is loading. Please wait.

HI in Galaxies at Redshifts 0.1 to 1.0: Current and Future Observations Using Optical Redshifts for HI Coadding Deep Surveys of the Radio Universe with.

Similar presentations


Presentation on theme: "HI in Galaxies at Redshifts 0.1 to 1.0: Current and Future Observations Using Optical Redshifts for HI Coadding Deep Surveys of the Radio Universe with."— Presentation transcript:

1 HI in Galaxies at Redshifts 0.1 to 1.0: Current and Future Observations Using Optical Redshifts for HI Coadding Deep Surveys of the Radio Universe with SKA Pathfinders Philip Lah

2 Collaborators: Frank Briggs (ANU) Jayaram Chengalur (NCRA) Matthew Colless (AAO) Roberto De Propris (CTIO) Michael Pracy (ANU)

3 Talk Outline Current Observations HI in star forming galaxies at z = 0.24 HI in Abell 370, a galaxy cluster at z = 0.37 Future Observations using ASKAP and WiggleZ using MeerKAT and zCOSMOS

4 Current Observations - HI coadding

5 Giant Metrewave Radio Telescope

6

7 Anglo-Australian Telescope

8 multi-object, fibre fed spectrograph 2dF/AAOmega instrument

9 The Fujita galaxies H  emission galaxies at z = 0.24

10 The Fujita Galaxies Subaru Field 24’ × 30’ narrow band imaging  Hα emission at z = 0.24 (Fujita et al. 2003, ApJL, 586, L115) 348 Fujita galaxies 121 redshifts using AAT GMRT ~48 hours on field DEC RA

11 Coadded HI Spectrum

12 HI spectrum all Fujita galaxies neutral hydrogen gas measurement using 121 redshifts - weighted average M HI = (2.26 ± 0.90) ×10 9 M  raw binned

13 The Cosmic Hydrogen Gas Density

14 my new point The Cosmic Gas Density vs. Redshift

15 my new point Cosmic Neutral Gas Density vs. Time

16 Abell 370 a galaxy cluster at z = 0.37

17 Abell 370 large galaxy cluster at z = 0.37, of order same size of Coma  similar cluster velocity dispersion and X-ray gas temperature optical imaging ANU 40 inch telescope spectroscopic follow-up with the AAT GMRT ~34 hours on cluster

18 Abell 370 galaxy cluster 324 galaxies with redshifts z = 0.345 to 0.387 105 blue galaxies 219 red galaxies Abell 370 galaxy cluster

19 3σ extent of X-ray gas R 200  radius at which cluster 200 times denser than the general field

20 The Measuring the HI signal

21 Galaxy Sizes For HI stacking I want the galaxies to be unresolved. For the Fujita galaxies I used an estimate of the HI size from the optical properties using information on nearby spiral and irregular field galaxies. Complication! The Abell 370 galaxies are a mixture of early and late types in a variety of environments. Solution I made multiple measurements of the galaxies HI mass using different smoothing sizes.

22 Galaxy Sizes For HI stacking I want the galaxies to be unresolved. For the Fujita galaxies I used an estimate of the HI size from the optical properties using information on nearby spiral and irregular field galaxies. Complication! The Abell 370 galaxies are a mixture of early and late types in a variety of environments. Solution I made multiple measurements of the galaxies HI mass using different smoothing sizes.

23 Galaxy Sizes For HI stacking I want the galaxies to be unresolved. For the Fujita galaxies I used an estimate of the HI size from the optical properties using information on nearby spiral and irregular field galaxies. Complication! The Abell 370 galaxies are a mixture of early and late types in a variety of environments. Solution I made multiple measurements of the galaxies HI mass using different smoothing sizes.

24 The Average HI Mass Measurements

25 HI mass 324 galaxies 219 galaxies 105 galaxies 94 galaxies 168 galaxies 156 galaxies 104 galaxies 220 galaxies

26 HI mass 324 galaxies 219 galaxies 105 galaxies 94 galaxies 168 galaxies 156 galaxies 104 galaxies 220 galaxies

27 HI mass 324 galaxies 219 galaxies 105 galaxies 94 galaxies 168 galaxies 156 galaxies 104 galaxies 220 galaxies

28 HI mass 324 galaxies 219 galaxies 105 galaxies 94 galaxies 168 galaxies 156 galaxies 104 galaxies 220 galaxies

29 HI mass 324 galaxies 219 galaxies 105 galaxies 94 galaxies 168 galaxies 156 galaxies 104 galaxies 220 galaxies

30 HI spectra – Large Smoothing M HI = (6.6 ± 3.5) ×10 9 M  M HI = (23.0 ± 7.7) ×10 9 M 

31 HI Flux – All Galaxies 30 arcsec across ~150 kpc across

32 HI Flux – The Blue Galaxies Outside X-ray Gas 30 arcsec across ~150 kpc across

33 Future Observations - HI coadding

34 What I could do with the SKA pathfinders if you gave them to me TODAY.

35 ASKAP and MeerKAT parameters ASKAPMeerKAT Number of Dishes 4580 Dish Diameter 12 m Aperture Efficiency 0.8 System Temp. 35 K30 K Frequency range 700 – 1800 MHz700 – 10000 MHz Instantaneous bandwidth 300 MHz512 MHz Field of View: at 1420 MHz (z = 0) at 700 MHz (z = 1) 30 deg 2 1.2 deg 2 4.8 deg 2 Maximum Baseline Length 8 km10 km

36 ASKAP and MeerKAT parameters ASKAPMeerKAT Number of Dishes 4580 Dish Diameter 12 m Aperture Efficiency 0.8 System Temp. 35 K30 K Frequency range 700 – 1800 MHz700 – 10000 MHz Instantaneous bandwidth 300 MHz512 MHz Field of View: at 1420 MHz (z = 0) at 700 MHz (z = 1) 30 deg 2 1.2 deg 2 4.8 deg 2 Maximum Baseline Length 8 km10 km

37 ASKAP and MeerKAT parameters ASKAPMeerKAT Number of Dishes 4580 Dish Diameter 12 m Aperture Efficiency 0.8 System Temp. 35 K30 K Frequency range 700 – 1800 MHz700 – 10000 MHz Instantaneous bandwidth 300 MHz512 MHz Field of View: at 1420 MHz (z = 0) at 700 MHz (z = 1) 30 deg 2 1.2 deg 2 4.8 deg 2 Maximum Baseline Length 8 km10 km z = 0.4 to 1.0 in a single observation z = 0.2 to 1.0 in a single observation

38 WiggleZ and zCOSMOS WiggleZzCOSMOS Instrument/TelescopeAAOmega on the AATVIMOS on the VLT Target Selection ultraviolet using the GALEX satellite optical I band I AB < 22.5 Survey Area 1000 deg 2 total 7 fields minimum size of ~100 deg 2 COSMOS field single field ~2 deg 2 Primary Redshift Range 0.5 < z < 1.00.1 < z < 1.2 Survey Timeline2006 to 20102005 to 2008 n z by survey end176,00020,000 n z in March 2008~62,000~10,000

39 WiggleZ and zCOSMOS WiggleZzCOSMOS Instrument/TelescopeAAOmega on the AATVIMOS on the VLT Target Selection ultraviolet using the GALEX satellite optical I band I AB < 22.5 Survey Area 1000 deg 2 total 7 fields minimum size of ~100 deg 2 COSMOS field single field ~2 deg 2 Primary Redshift Range 0.5 < z < 1.00.1 < z < 1.2 Survey Timeline2006 to 20102005 to 2008 n z by survey end176,00020,000 n z in March 2008~62,000~10,000

40 WiggleZ and zCOSMOS WiggleZzCOSMOS Instrument/TelescopeAAOmega on the AATVIMOS on the VLT Target Selection ultraviolet using the GALEX satellite optical I band I AB < 22.5 Survey Area 1000 deg 2 total 7 fields minimum size of ~100 deg 2 COSMOS field single field ~2 deg 2 Primary Redshift Range 0.5 < z < 1.00.1 < z < 1.2 Survey Timeline2006 to 20102005 to 2008 n z by survey end176,00020,000 n z in March 2008~62,000~10,000

41 WiggleZ and zCOSMOS WiggleZzCOSMOS Instrument/TelescopeAAOmega on the AATVIMOS on the VLT Target Selection ultraviolet using the GALEX satellite optical I band I AB < 22.5 Survey Area 1000 deg 2 total 7 fields minimum size of ~100 deg 2 COSMOS field single field ~2 deg 2 Primary Redshift Range 0.5 < z < 1.00.1 < z < 1.2 Survey Timeline2006 to 20102005 to 2008 n z by survey end176,00020,000 n z in March 2008~62,000~10,000

42 WiggleZ and zCOSMOS WiggleZzCOSMOS Instrument/TelescopeAAOmega on the AATVIMOS on the VLT Target Selection ultraviolet using the GALEX satellite optical I band I AB < 22.5 Survey Area 1000 deg 2 total 7 fields minimum size of ~100 deg 2 COSMOS field single field ~2 deg 2 Primary Redshift Range 0.5 < z < 1.00.1 < z < 1.2 Survey Timeline2006 to 20102005 to 2008 n z by survey end176,00020,000 n z in March 2008~62,000~10,000

43 WiggleZ and zCOSMOS WiggleZzCOSMOS Instrument/TelescopeAAOmega on the AATVIMOS on the VLT Target Selection ultraviolet using the GALEX satellite optical I band I AB < 22.5 Survey Area 1000 deg 2 total 7 fields minimum size of ~100 deg 2 COSMOS field single field ~2 deg 2 Primary Redshift Range 0.5 < z < 1.00.1 < z < 1.2 Survey Timeline2006 to 20102005 to 2008 n z by survey end176,00020,000 n z in March 2008~62,000~10,000

44 WiggleZ and zCOSMOS WiggleZzCOSMOS Instrument/TelescopeAAOmega on the AATVIMOS on the VLT Target Selection ultraviolet using the GALEX satellite optical I band I AB < 22.5 Survey Area 1000 deg 2 total 7 fields minimum size of ~100 deg 2 COSMOS field single field ~2 deg 2 Primary Redshift Range 0.5 < z < 1.00.1 < z < 1.2 Survey Timeline2006 to 20102005 to 2008 n z by survey end176,00020,000 n z in March 2008~62,000~10,000

45 WiggleZ and ASKAP

46 WiggleZ field data as of March 2008 z = 0.1 to 1.0 ASKAP beam size Diameter 6.2 degrees Area 30 deg 2 ~10 degrees across

47 ASKAP & WiggleZ 100hrs n z = 5975

48 ASKAP & WiggleZ 100hrs n z = 5975

49 ASKAP & WiggleZ 100hrs n z = 5975

50 ASKAP & WiggleZ 1000hrs n z = 5975

51 zCOSMOS and MeerKAT

52 zCOSMOS field data as of March 2008 z = 0.1 to 1.0 MeerKAT beam size at 1420 MHz z = 0 MeerKAT beam size at 1000 MHz z = 0.4 ~1.3 degrees across

53 MeerKAT & zCOSMOS 100hrs n z = 7615

54 MeerKAT & zCOSMOS 100hrs n z = 7615

55 MeerKAT & zCOSMOS 100hrs n z = 7615

56 MeerKAT & zCOSMOS 1000hrs n z = 7615

57 Conclusion

58 can use coadding with optical redshifts to make measurement of the HI 21 cm emission from galaxies at redshifts z > 0.1 the measured cosmic neutral gas density at z = 0.24 is consistent with that from damped Lyα measurements galaxy cluster Abell 370 at z = 0.37 has significantly amounts of neutral hydrogen gas the SKA pathfinders ASKAP and MeerKAT can measure significant amounts of HI 21 cm emission out to z = 1.0 using the coadding technique with existing optical redshift surveys Conclusion


Download ppt "HI in Galaxies at Redshifts 0.1 to 1.0: Current and Future Observations Using Optical Redshifts for HI Coadding Deep Surveys of the Radio Universe with."

Similar presentations


Ads by Google