World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.

Slides:



Advertisements
Similar presentations
Creating new states of matter:
Advertisements

Creating new states of matter:
Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Dynamics of Spin-1 Bose-Einstein Condensates
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Coherence, Dynamics, Transport and Phase Transition of Cold Atoms Wu-Ming Liu (刘伍明) (Institute of Physics, Chinese Academy of Sciences)
Non-Equilibrium Dynamics in Ultracold Interacting Atoms Sergio Smith (Howard University) Simulations of Ultracold Atoms in Optical Lattices.
Interacting Ultra Cold Atoms a brief overview Fei Zhou PITP, University of British Columbia at Quantum Nanoscience conference, Noosa Blue, Australia, Jan.
Fermi surface change across quantum phase transitions Phys. Rev. B 72, (2005) Phys. Rev. B (2006) cond-mat/ Hans-Peter Büchler.
冷原子實驗之基本原理 (I) 韓殿君 國立中正大學物理系 2003 年 8 月 5 日 於理論中心.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Anderson localization in BECs
Modeling strongly correlated electron systems using cold atoms Eugene Demler Physics Department Harvard University.
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Bose-Fermi solid and its quantum melting in a one-dimensional optical lattice Bin Wang 1, Daw-Wei Wang 2, and Sankar Das Sarma 1 1 CMTC, Department of.
Measuring correlation functions in interacting systems of cold atoms Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Strongly correlated systems: from electronic materials to cold atoms Collaborators: E. Altman, R. Barnett, I. Cirac, L. Duan, V. Gritsev, W. Hofstetter,
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Temperature scale Titan Superfluid He Ultracold atomic gases.
Ultracold Fermi gases : the BEC-BCS crossover Roland Combescot Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
Interference of fluctuating condensates Anatoli Polkovnikov Harvard/Boston University Ehud Altman Harvard/Weizmann Vladimir Gritsev Harvard Mikhail Lukin.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
1 Bose-Einstein Condensation PHYS 4315 R. S. Rubins, Fall 2009.
Localization of phonons in chains of trapped ions Alejandro Bermúdez, Miguel Ángel Martín-Delgado and Diego Porras Department of Theoretical Physics Universidad.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Kaiserslautern, April 2006 Quantum Hall effects - an introduction - AvH workshop, Vilnius, M. Fleischhauer.
Lectures on Quantum Gases Lectures G. Shlyapnikov 2015 年 6 月 10, 17, 25, 30 日, 下午 3:30-5:00 频标楼 4 楼报告厅 About the speaker : Director of Research at CNRS,
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Experiments with ultracold atomic gases
Quantum Gases: Past, Present, and Future Jason Ho The Ohio State University Hong Kong Forum in Condensed Matter Physics: Past, Present, and Future HKU.
Experiments with Fermi e Bose atomic gases in optical lattices Giovanni Modugno LENS, Università di Firenze, and INFM XXVII Convegno di Fisica Teorica,
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
Bose-Fermi mixtures in random optical lattices: From Fermi glass to fermionic spin glass and quantum percolation Anna Sanpera. University Hannover Cozumel.
Introduction to Ultracold Atomic Gases Qijin Chen.
Critical stability of a dipolar Bose-Einstein condensate: Bright and vortex solitons Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade.
Lianyi He and Pengfei Zhuang Physics Department, Tsinghua U.
Bose-Einstein condensates in random potentials Les Houches, February 2005 LENS European Laboratory for Nonlinear Spectroscopy Università di Firenze J.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Strong correlations and quantum vortices for ultracold atoms in rotating lattices Murray Holland JILA (NIST and Dept. of Physics, Univ. of Colorado-Boulder)
Lecture IV Bose-Einstein condensate Superfluidity New trends.
B.E.C.(Bose-Einstein Condensation) 발표자 : 이수룡 (98).
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Ultracold Helium Research Roel Rozendaal Rob van Rooij Wim Vassen.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Pairing Gaps in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems Cheng Chin JFI and Physics, University of Chicago Exp.: Rudolf.
Optical lattice emulator Strongly correlated systems: from electronic materials to ultracold atoms.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
Bose-Einstein Condensates The Coldest Stuff in the Universe Hiro Miyake Splash! November 17, 2012.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
11/14/2007NSU, Singapore Dipolar Quantum Gases: Bosons and Fermions Han Pu 浦晗 Rice University, Houston, TX, USA Dipolar interaction in quantum gases Dipolar.
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
The Center for Ultracold Atoms at MIT and Harvard Strongly Correlated Many-Body Systems Theoretical work in the CUA Advisory Committee Visit, May 13-14,
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Production and control of KRb molecules Exploring quantum magnetisms with ultra-cold molecules.
A Review of Bose-Einstein Condensates MATTHEW BOHMAN UNIVERSITY OF WASHINGTON MARCH 7,
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Cold Gases Meet Condensed Matter Physics Cold Gases Meet Condensed Matter Physics C. Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure & UPMC,
Agenda Brief overview of dilute ultra-cold gases
Ultracold gases Jami Kinnunen & Jani-Petri Martikainen Masterclass 2016.
Bose-Einstein Condensation Ultracold Quantum Coherent Gases
Space Telescope Science Institute
One-Dimensional Bose Gases with N-Body Attractive Interactions
Spectroscopy of ultracold bosons by periodic lattice modulations
7. Ideal Bose Systems Thermodynamic Behavior of an Ideal Bose Gas
Presentation transcript:

World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang

Temperature ? What we mean by “ultracold” ?

Why low temperature ? Ans: To see the quantum effects ! Uncertainty principle:

(after Nature, 416, 225 (’02))

Why strong interaction ? Because interaction can make “many” to be “different” ! P. Anderson: “Many is not more” Example: 1D interacting electrons  crystalization and no fermionic excitation

How to make interaction stronger ?

How to reach ultracold temperature ? 1. Laser cooling ! (1997 Nobel Price) Use red detune laser + Doppler effect

How to reach ultracold temperature ? 2. Evaporative cooling ! Reduce potential barrial +thermal equilibrium

Typical experimental environment MIT

How to do measurement ? Trapping and cooling Perturbing Releasing and measuring BEC (2001 Nobel Price)

What is Bose-Einstein condensation ? When T is small enough, noninteracting bosons like to stay in the lowest energy state, i.e. BEC

How about fermions in T=0 ? When T-> 0, noninteracting fermions form a compact distribution in energy level. E D(E) Fermi sea

BEC and Superfluidity of bosons Superfluid Normal fluid v repulsion Landau’s two-fluid model BEC = superfluidity uncondensate condensate (after Science, 293, 843 (’01))

Phonons and interference in BEC Phonon=density fluctuation Interference Matter waves ? (after Science 275, 637 (’97))

Vortices in condensate Vortex = topological disorder E L 1320 Vortices melting, quantum Hall regime ? (after Science 292, 476 (’01)) (after PRL 87, (’01))

Spinor condensation in optical trap Na B E F=2 F=1 (see for example, cond-mat/ )

Boson-fermion mixtures Sympathetic cooling Fermions are noninteracting ! phonon-mediated interaction fermion phonon E D(E) Interacting fermi sea rf-pulse

Feshbach Resonance (i) Typical scattering: (ii) Resonant scattering: B a Molecule state

Molecule and pair condensate (JILA, after Nature 424, 47 (’03)) (MIT group, PRL 92, (’04)) (Innsbruck, after Science 305, 1128 (’04))

B a First evidence of superfluidity of fermion pairing

Optical lattice 3D lattice 1D lattice Entanglement control other lattice

Mott-Insulator transition (after Nature 415, 39 (’02)) n=1 n=2 n=3 superfluid Bose-Hubbard model

Fermions in optical lattice Fermi Hubbard model Superfluidity of fermion pairing in lattice is also realized.

Transport in 1D waveguide Interference ? Finite temperature + semiconductor technique wave guide wire

Dipoles in nature: (1) Heteronuclear molecules (2) Atoms with large magnetic moment (a) Direct molecules p~ 1-5 D (b) But difficult to be cooled Small moment But it is now ready to go ! (Doyle, Meijer, DeMille etc.) (Stuhler etc.)

Condensate (superfluid) T c ~700 nK

Cold dipolar atoms/molecules (1) Heteronuclear molecules (2) Atoms with large magnetic moment (a) Direct molecules p~ 1-5 D (b) But difficult to be cooled Small moment But it is now ready to go ! (Doyle, Meijer, DeMille etc.) (Stuhler etc.)

Condensate (superfluid) T c ~700 nK

Interdisciplinary field Ultracold atoms Traditional AMO Quantum Information Nonlinear Physics Precise measurement Condensed matter Cosmology Soft-matter/ chemistry