Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 1 Linear Programming Overview Formulation of the problem and example Incremental,

Slides:



Advertisements
Similar presentations
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Advertisements

3.4 Linear Programming 10/31/2008. Optimization: finding the solution that is either a minimum or maximum.
Incremental Linear Programming Linear programming involves finding a solution to the constraints, one that maximizes the given linear function of variables.
Lecture #3; Based on slides by Yinyu Ye
Advanced Topics in Algorithms and Data Structures Lecture 7.2, page 1 Merging two upper hulls Suppose, UH ( S 2 ) has s points given in an array according.
I. The Problem of Molding Does a given object have a mold from which it can be removed? object not removable mold 1 object removable Assumptions The object.
Convex Hulls in 3-space Jason C. Yang.
Convexity of Point Set Sandip Das Indian Statistical Institute.
CHAPTER 5: CONVEX POLYTOPES Anastasiya Yeremenko 1.
A Randomized Polynomial-Time Simplex Algorithm for Linear Programming Daniel A. Spielman, Yale Joint work with Jonathan Kelner, M.I.T.
Convex Hulls Computational Geometry, WS 2006/07 Lecture 2 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für.
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part IV Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Orthogonal Range Searching Computational Geometry, WS 2006/07 Lecture 13 – Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
Delaunay Triangulation Computational Geometry, WS 2006/07 Lecture 11 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 1 Linear Programming Overview Formulation of the problem and example Incremental,
Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann 1 l-Monotone Convex polygons are easy to triangulate. Unfortunately the partition.
Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann 1 Polygon Triangulation Motivation: Guarding art galleries Art gallery theorem.
Lecture 12 : Special Case of Hidden-Line-Elimination Computational Geometry Prof. Dr. Th. Ottmann 1 Special Cases of the Hidden Line Elimination Problem.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2006 Lecture 9 Wednesday, 11/15/06 Linear Programming.
Orthogonal Range Searching-1Computational Geometry Prof. Dr. Th. Ottmann 1 Orthogonal Range Searching 1.Linear Range Search : 1-dim Range Trees 2.2-dimensional.
Lecture 5: Orthogonal Range Searching Computational Geometry Prof. Dr. Th. Ottmann 1 Orthogonal Range Searching 1.Linear Range Search : 1-dim Range Trees.
Design and Analysis of Algorithms
Special Cases of the Hidden Line Elimination Problem Computational Geometry, WS 2007/08 Lecture 16 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen,
Duality and Arrangements Computational Geometry, WS 2007/08 Lecture 6 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Half-Space Intersections
Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 1 Linear Programming Overview Formulation of the problem and example Incremental,
Accelerated Cascading Advanced Algorithms & Data Structures Lecture Theme 16 Prof. Dr. Th. Ottmann Summer Semester 2006.
Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 1 Linear Programming Overview Formulation of the problem and example Incremental,
Lecture 10 : Delaunay Triangulation Computational Geometry Prof. Dr. Th. Ottmann 1 Overview Motivation. Triangulation of Planar Point Sets. Definition.
Linear Programming Computational Geometry, WS 2007/08 Lecture 7 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Parallel Merging Advanced Algorithms & Data Structures Lecture Theme 15 Prof. Dr. Th. Ottmann Summer Semester 2006.
Linear Programming Computational Geometry, WS 2007/08 Lecture 7, Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Lecture 8 : Arrangements and Duality Computational Geometry Prof. Dr. Th. Ottmann 1 Duality and Arrangements Duality between lines and points Computing.
Point Location Computational Geometry, WS 2007/08 Lecture 5 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für.
7(2) THE DUAL THEOREMS Primal ProblemDual Problem b is not assumed to be non-negative.
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part III Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Orthogonal Range Searching Computational Geometry, WS 2006/07 Lecture 13 - Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
Lecture 6: Point Location Computational Geometry Prof. Dr. Th. Ottmann 1 Point Location 1.Trapezoidal decomposition. 2.A search structure. 3.Randomized,
Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 1 Linear Programming Overview Formulation of the problem and example Incremental,
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Line Segment Intersection Computational Geometry, WS 2006/07 Lecture 3 – Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Duality and Arrangements Computational Geometry, WS 2006/07 Lecture 7 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Chapter 5 Linear Inequalities and Linear Programming Section R Review.
C&O 355 Lecture 2 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
Computational Geometry Piyush Kumar (Lecture 5: Linear Programming) Welcome to CIS5930.
Linear Programming Piyush Kumar. Graphing 2-Dimensional LPs Example 1: x y Feasible Region x  0y  0 x + 2 y  2 y  4 x  3 Subject.
UNC Chapel Hill M. C. Lin Linear Programming Reading: Chapter 4 of the Textbook Driving Applications –Casting/Metal Molding –Collision Detection Randomized.
Approximation Algorithms Department of Mathematics and Computer Science Drexel University.
Notes 7.5 – Systems of Inequalities. I. Half-Planes A.) Given the inequality, the line is the boundary, and the half- plane “below” the boundary is the.
The Simplex Algorithm 虞台文 大同大學資工所 智慧型多媒體研究室. Content Basic Feasible Solutions The Geometry of Linear Programs Moving From Bfs to Bfs Organization of a.
Arrangements and Duality Motivation: Ray-Tracing Fall 2001, Lecture 9 Presented by Darius Jazayeri 10/4/01.
1 / 41 Convex Hulls in 3-space Jason C. Yang. 2 / 41 Problem Statement Given P: set of n points in 3-space Return: –Convex hull of P: CH (P) –Smallest.
CPSC 536N Sparse Approximations Winter 2013 Lecture 1 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAA.
UNC Chapel Hill M. C. Lin Randomized Linear Programming For any set of H of half-planes, there is a good order to treat them. Thus, we can improve the.
Common Intersection of Half-Planes in R 2 2 PROBLEM (Common Intersection of half- planes in R 2 ) Given n half-planes H 1, H 2,..., H n in R 2 compute.
Computational Geometry
1 Chapter 4 Geometry of Linear Programming  There are strong relationships between the geometrical and algebraic features of LP problems  Convenient.
Linear Programming Many problems take the form of maximizing or minimizing an objective, given limited resources and competing constraints. specify the.
Proving that a Valid Inequality is Facet-defining
Orthogonal Range Searching and Kd-Trees
Linear Programming.
1.4 The Extreme Point Theorem : Geometry of a linear programming problem The set of feasible solutions to a general linear programming problem is a convex.
Outline Simplex algorithm The initial basic feasible solution
Online Learning Kernels
CHAPTER 4. LINEAR PROGRAMMING
I. The Problem of Molding
CMPS 3130/6130 Computational Geometry Spring 2017
Proving that a Valid Inequality is Facet-defining
Linear Constrained Optimization
Presentation transcript:

Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 1 Linear Programming Overview Formulation of the problem and example Incremental, deterministic algorithm Randomized algorithm Unbounded linear programs Linear programming in higher dimensions

Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 2 Algorithm 2D-LP Input:A 2-Dimensional Linear Program (H, c ) Output: Either one optimal vertex or  or a ray along which (H, c ) is unbounded. if UnboundedLP(H, c ) reports (H, c ) is infeasible then return UnboundedLP(H, c ) else h 1 := h; h 2 := h´ ; v 2 := l 1  l 2 h 3,...,h n := remaining half-planes of H for i:= 3 to n do if v i-1  h i then v i :=v i-1 else S i-1 := H i-1  * l i v i := 1-dim-LP(S i-1, c ) if v i not exists then return  return v n compute a random permutation h 3,..., h n

Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 3 Unbounded Linear Programs hihi ii :=The outward normal of h i  i := The smaller angle that  makes with c I min, an index with  i min = min  j, 1  j  n   c

Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 4 H min := { h j  H | = min } H par := { h j  H | = - min } H par { H min { H par { H min { h i* cc

Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 5 Lemma Let H = {h 1,h 2,...,h n } be a set of half-planes. Assuming that  (H min  H par ) is not empty. 1.If l i*  h j* is unbounded in the direction c for every half-plane h j in the set H \ (H min  H par ), then (H, c ) is unbounded along a ray contained in l i*. 2.If l i*  h j* is bounded in the direction c for some h j* in H \ (H min  H par ), then the linear program ({h i*, h j* }, c ) is bounded.

Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 6 Algorithm UnboundedLP Input:A 2-Dimensional Linear Program (H, c ) Output: Either one optimal vertex or  or a ray along which (H, c) is unbounded. 1.For each half plane h i  H compute  j 2.Let hi be half plane with  j = min  j, 1  j  n 3.H min := { h j  H | = min } 4.H par := { h j  H | = - min } 5. = H \ (H min  H par ), compute intersection in H min  H par 6.If the intersection is empty then report (H, c ) is feasible else Let h i  H min be the half-plane whose line bounds the intersection if there is half plane h j*  sucht hat l i*  h j* bounded in c then report ({h i*, h j* }, c ) is bounded else report is bounded along l i*  (  )

Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 7 Higher Dimensions Let h 1,...,h d H be the d certificate half-spaces that UnboundedLP returns. C i := h 1  h 2 ...  h i Lemma: Let d < i  n, and let C i be defined as above. 1. If v i-1  h i, then v i = v i-1 2. If v i-1  h i, then either C i =  or v i  g i, where g i is the hyperplane that bounds h i.

Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 8 Algorithm RandomozedLP Input : A linear program (H, c ). Output : Either one optimal vertex or  or a ray along which (H, c ) is unbounded. if UnboundedLP(H, c ) reports (H, c ) is unbounded then Report a ray along which (H, c ) unbounded. else Let h 1,...,h d  H be the certificate halfplanes returned by UnboundedLP, and let v d be their vertex of intersection Compute a random permutation h d+1,...,h n for i = d+1 to n do if v i-1  h i then v i = v i-1 else S i-1 := H i-1  * bd(h i v i := d-1-dim-LP(S i-1, c ) if v i not exists then return  Return v n

Lecture 4: Linear Programming Computational Geometry Prof. Dr. Th. Ottmann 9 Theorem The d-dimensional linear programming problem with n constraints can be solved in O(d!n) expected time using linear storage.