BARTOSZEK ENGINEERING 1 Review of the Stress Analysis of the MiniBooNE Horn MH1 Larry Bartoszek, P.E. 1/20/00 BARTOSZEK ENGINEERING.

Slides:



Advertisements
Similar presentations
Control calculations Heat Engines & Boilers.
Advertisements

CHE 333 Class 20 Fracture continued.
Chapter 11 Mechanical Properties of Materials
Design of Machine Elements
NOTCH EFFECTS INTRODUCTION OF A NOTCH AFFECTS THE FRACTURE PROCESS Eg: INCREASES THE DUCTILE-BRITTLE TRANSITION TEMPERATURE OF STEEL NOTCH CREATES A LOCAL.
1 ASTM : American Society of Testing and Materials.
1 CONSTRAINT CORRECTED FRACTURE MECHANICS IN STRUCTURAL INTEGRITY ASSESSMENT Application to a failure of a steel bridge Anssi Laukkanen, Kim Wallin Safir.
3 Torsion.
Chapter 3.2: Heat Exchanger Analysis Using -NTU method
ME 388 – Applied Instrumentation Laboratory Fatigue Lab.
Paul Kendall Alex Perez.  Virtually all of a cars linear energy is transferred to the brakes as thermal energy.  The faster the car stops, the less.
for a neutrinos factory
DESIGNING AGAINST FATIGUE
Design of an Aerospace Component
Mechanics of Materials II
Joints and Shear Fractures
Chapter 5 – Design for Different Types of Loading
Mechanics of Materials II UET, Taxila Lecture No. (3)
Workshop A12-2 Fatigue: Strain-Life.
Chapter 6 Fatigue Failure Theories
© 2011 Autodesk Freely licensed for use by educational institutions. Reuse and changes require a note indicating that content has been modified from the.
L. Bartoszek BARTOSZEK ENGINEERING For NBI2012 at CERN 11/4/12.
Chapter 5, Part B Failure Modes
Thermal Strains and Element of the Theory of Plasticity
SHEAR IN BEAMS. SHEAR IN BEAMS Introduction Loads applied to beams produce bending moments, shearing forces, as shown, and in some cases torques. Beams.
Engineering Doctorate – Nuclear Materials Development of Advanced Defect Assessment Methods Involving Weld Residual Stresses If using an image in the.
Fracture and Creep in the All-Tungsten ARIES Divertor
Electrical Energy and Capacitance
1 Calorimeter Thermal Analysis with Increased Heat Loads September 28, 2009.
API 6HP Process1 API 6HP Example Analysis Project API E&P Standards Conference Applications of Standards Research, 24 June 2008.
T.M.F.T: Thermal Mechanical Fatigue Testing Wale Adewole Siyé Baker Heriberto Cortes Wesley Hawk Ashley McKnight.
Chapter 7 Fatigue Failure Resulting from Variable Loading
9 Torsion.
STRUCTURES Outcome 3 Gary Plimer 2008 MUSSELBURGH GRAMMAR SCHOOL.
1 MME3360b Assignment 04 10% of final mark 6 problems, each worth 16.7% of assignment mark Due April 9 th, 2012.
FRACTURE MECHANICS AND FATIGUE DESIGN HANS MF PANJAITAN Marinteknisk Senter Otto Nielsens Veg Trondheim Norway Mobile:
One-Dimensional Steady-State Conduction
Design Stress & Fatigue
DESIGN FOR FATIGUE STRENGTH
Welding Design 1998/MJ1/MatJoin2/1 Design. Lesson Objectives When you finish this lesson you will understand: Mechanical and Physical Properties (structure.
FATIGUE Fatigue of Materials (Cambridge Solid State Science Series) S. Suresh Cambridge University Press, Cambridge (1998)
Fatigue Failure Due to Variable Loading
Failure Criteria and stress concentration
5 장 Dielectrics and Insulators. Preface ‘ Ceramic dielectrics and insulators ’ is a wide-ranging and complex topic embracing many types of ceramic, physical.
CBE 150A – Transport Spring Semester 2014 Radiation.
Chapter 7 Fatigue Failure Resulting from Variable Loading
3 Torsion.
Convection: Internal Flow ( )
Machine Design I (MCE-C 203) Mechatronics Dept., Faculty of Engineering, Fayoum University Dr. Ahmed Salah Abou Taleb Lecturer, Mechanical Engineering.
Yield point and yield stress or strength,  y Offset method finds this yield stress by assuming a 0.2 % strain (.002).002 Big yielding region, large elongation.
DER Program Weibull Strength Parameter Requirements for Si 3 N 4 Turbine Rotor Reliability Steve Duffy & Eric Baker Connecticut Reserve Technologies, LLC.
Mechanical Properties of Materials
Course No.: MEBF ZC342 MACHINE DESIGN
Mechanical & Aerospace Engineering West Virginia University Statistics of Brittle Fracture.
Advanced Methods in Materials Selection
Opti 523 Wenrui Cai. Tensile stress will occur just outside the contact area and will form cracks into subsurface of the glass. If damage does occur,
Fatigue 7-1. Fatigue of Metals Metals often fail at much lower stress at cyclic loading compared to static loading. Crack nucleates at region of stress.
EGM 5653 Advanced Mechanics of Materials
Hasmukh Goswami College Of Engineering
TS Cool Down Studies TSu Unit Coils (24-25) N. Dhanaraj and E. Voirin Tuesday, 10 March 2015 Reference: Docdb No:
Chapter 4. Mechanical Testing: Tension Test and Other Basic Tests
7. Yield Criteria of Metals
FLUCTUATING STRESSES SUBJECT: Design of machine elements
Shear in Straight Members Shear Formula Shear Stresses in Beams
Determination of Fracture Toughness
Review of the Stress Analysis of the MiniBooNE Horn MH1
Mechanical Properties: 2
FATIGUE FATIGUE Dr. Mohammed Abdulrazzaq
Mechanical Properties Of Metals - I
Review of the Modal Analysis of the MiniBooNE Horn MH1
Presentation transcript:

BARTOSZEK ENGINEERING 1 Review of the Stress Analysis of the MiniBooNE Horn MH1 Larry Bartoszek, P.E. 1/20/00 BARTOSZEK ENGINEERING

2 Overview 1 l The MiniBooNE horn carries 170 kiloamps of current in a pulse 143 microseconds long. l The pulse repeats 10 times in a row, 1/15 sec between each pulse, then the horn is off until 2 seconds from the first pulse in train. l The horn is stressed by differential thermal expansion and magnetic forces. We need to design it to survive 200 million cycles with >95% confidence.

BARTOSZEK ENGINEERING 3 Overview 2 l Motivation for design lifetime: »The horn will eventually become very radioactive and require a complicated handling procedure in the event of a replacement. We don’t want to make many of these objects. »We can’t afford to make many horns. l The major design issue is fatigue. l Every component around the horn needs to survive 200 million pulses to get overall system reliability.

BARTOSZEK ENGINEERING 4 Analysis Outline 1: Fatigue theory l Discussion of fatigue in Al 6061-T6 »Presentation of data sources »Discussion of effects that modify maximum stress in fatigue »Discussion of scatter in the maximum stress data in fatigue »Discussion of multiaxial stress in fatigue

BARTOSZEK ENGINEERING 5 Analysis Outline 2: Allowable stress l Determination of allowable stress in fatigue »Perform a statistical analysis on the MIL- SPEC data to get confidence curves for a sample set of fatigue tests. »This yields a starting point for maximum stress that needs to be corrected for environmental factors. »The allowable is then compared with the calculated stress from the FEA results.

BARTOSZEK ENGINEERING 6 Analysis Outline 3: Calculated Stress l Description of the finite element model l FEA results on MH1 and the calculated stresses »Assumptions »Thermal analysis »Magnetic force analysis »Combined forces transient analysis »Results for stress ratio R and maximum calculated stress in horn

BARTOSZEK ENGINEERING 7 Sources of Fatigue Data for AL 6061-T6 used in analysis l MIL-SPEC Handbook #5, Metallic Materials and Elements for Aerospace Vehicles l ASM Metals Handbook Desk Edition l ASM Handbook Vol. 19, Fatigue and Fracture l “Aluminum and Aluminum Alloys”, pub. by ASM l “Atlas of Fatigue Curves”, pub. by ASM l “Fatigue Design of Aluminum Components and Structures”, Sharp, Nordmark and Menzemer

BARTOSZEK ENGINEERING 8 How well do sources agree? l For unwelded, smooth specimens, R=-1, room temperature, in air, N=5*10 7 »MIL-SPEC  max =13 ksi (89.6 MPa) »Atlas of Fatigue Curves  max =17 ksi (117.1 MPa) »Fatigue Design of Al…  max =16 ksi (110.2 MPa) »Metals Handbook (N=5*10 8 )  max =14 ksi (96.5 MPa) l These numbers represent 50% probability of failure at 5*10 7 cycles.

BARTOSZEK ENGINEERING 9 Effects that lower fatigue strength, 1 l Geometry influences fatigue: »Tests are done on “smooth” specimens and “notched” specimens »Smooth specimens have no discontinuities in shape » Notched specimens have a standard shaped discontinuity to create a stress riser in the material l Notches reduce fatigue strength by ~1/2 »see graph on next slide

Graph from Atlas of Fatigue Curves ASM data showing effect of notches on fatigue strength

BARTOSZEK ENGINEERING 11 Effects that lower fatigue strength, 2 l Welding influences fatigue: »Welded and unwelded specimens are tested l Welding reduces fatigue strength by ~1/2 »see graph on next slide

Graph from Atlas of Fatigue Curves ASM data showing effect of welding

BARTOSZEK ENGINEERING 13 Effects that lower fatigue strength, 3 l The stress ratio influences fatigue strength: »Stress Ratio, R, is defined as the ratio of the minimum to maximum stress. –Tension is positive, compression is negative »R=S min /S max varies from -1  R  1 –R = -1  alternating stress)  max =16 ksi –R = 0  S min =0)  max =24 ksi, (1.5X at R=- 1) –R =.5  max =37 ksi, (2.3X at R=- 1) »These values are for N=10 7 cycles, 50% confidence l Stress ratio is a variable modifier to maximum stress. Whole stress cycle must be known.

This is the page from the MIL- SPEC handbook that was used for the statistical analysis of the scatter in fatigue test data. The analytical model assumes that all test data regardless of R can be plotted as a straight line on a log-log plot after all the data points are corrected for R. The biggest problem with this data presentation style is that the trend lines represent 50% confidence at a given life and we need >95% confidence of ability to reach 200 x 10 6 cycles. MIL-SPEC Data Showing Effect of R

BARTOSZEK ENGINEERING 15 Effects that lower fatigue strength, 4 l Moisture reduces fatigue strength »For R = -1, smooth specimens, ambient temperature: –N=10 8 cycles in river water,  max = 6 ksi –N=10 7 cycles in sea water,  max ~ 6 ksi l Hard to interpret this data point –N=5*10 7 cycles in air,  max = 17 ksi »See data source on next slide »Note curve of fatigue crack growth rate in humid air, second slide

Graph from “Atlas of Fatigue Curves” showing that the corrosion fatigue strength of aluminum alloys is almost constant across all commercially available alloys, independent of yield strength. Data from this graph was used to determine the moisture correction factor. ASM data on corrosion fatigue strength of many Al alloys

Graph from “Atlas of Fatigue Curves” This graph is for a different alloy than we are using, but the assumption is that moisture probably increases the fatigue crack growth rate for 6061 also. It was considered prudent to correct the maximum stress for moisture based on this curve and the preceding one. ASM data on effect of moisture on fatigue crack growth rate

BARTOSZEK ENGINEERING 18 Discussion of scatter in the maximum stress data in fatigue l The MIL-SPEC data is a population of 55 test specimens that shows the extent of scatter in the test results. »Trend lines in the original graph indicate 50% chance of part failure at the given stress and life. »The source gave a method of plotting all the points on the same curve when corrected for R. l We used statistical analysis to create confidence curves on this sample set.

This graph plots all of the MIL-SPEC data points corrected for R by the equation at bottom. The y axis is number of cycles to failure, the x axis is equivalent stress in ksi. From this graph we concluded that the equivalent stress for >97.5% confidence at 2e8 cycles was 10 ksi. Confidence Curves on Equivalent Stress data plot

BARTOSZEK ENGINEERING 20 Discussion of multiaxial stress in fatigue l Maximum stress in fatigue is always presented as result of uniaxial stress tests »Horn stresses are multiaxial. l We assumed that we could sensibly compare the uniaxial stress allowable with calculated multiaxial combined stresses »FEA provided stress intensities and principal normal stresses that were converted to combined stress »See next slide for combined stress expression

BARTOSZEK ENGINEERING 21 Expression for combined stress l Maximum Distortion Energy Theory provides an expression for comparing combined principal normal triaxial stresses to yield stress in uniaxial tension »We assumed this expression was valid comparing combined stress with uniaxial fatigue maximum stress limit »S allow  (S 1 -S 2 ) 2 +(S 2 -S 3 ) 2 +(S 3 -S 1 ) 2 ]/2}.5

BARTOSZEK ENGINEERING 22 Allowable Stress Determination 1 l Allowable stress starts as the equivalent stress for 97.5% confidence that material will not fail in 2e8 cycles »S eq = 10 ksi (68.9 MPa) l Allowable stress is then corrected by multiplicative factors, as described in Shigley’s “Mechanical Engineering Design” »S allow = S eq *f R *f moisture *f weld

BARTOSZEK ENGINEERING 23 Calculation of stress ratio correction factor: l First correction is for R,stress ratio »We determined that the minimum stress was thermal stress alone after the horn cooled between pulses just before the next pulse. »Maximum stress happened at time in cycle when magnetic forces and temperature were peaked simultaneously »R was calculated by taking the ratio in every horn element in the FEA of the maximum principal normal stresses at these two points in time –Results not significantly different for ratios of combined stress –S max = S eq /(1-R).63 therefore: f R = 1 /(1-R).63

BARTOSZEK ENGINEERING 24 Finding the moisture correction factor: l Determining the fatigue strength moisture correction factor: »At R = -1, N = 10 8 in river water,  max = 6 ksi »At R = -1, N = 5*10 8 in air,  max = 14 ksi »6 ksi/14 ksi =.43 Moisture effect could be.43  max in air »We used this number, and assumed that all of the aluminum was exposed to moisture

BARTOSZEK ENGINEERING 25 Other Correction Factors l From data above, »Welding correction factor, f weld =.5 »Welding correction factor only applied to welded areas l We assumed that there were no notches anywhere. »This is fair for the inner conductor »Stresses are so low on the outer conductor that it doesn’t matter l We did not include a size correction to go from sample size to horn size.

BARTOSZEK ENGINEERING 26 Description of the finite element model l We created a 2D axisymmetric model of the horn and first did a transient thermal analysis »We assumed 3000 W/m 2 -K convective heat transfer coefficient all along the inner conductor only »The only heat transfer from the outer conductor was by conduction to inner »The skin depth of the current was explicitly modeled (all heat was generated within 1.7mm of surface of conductors)

Plot of temperature of smallest radius of inner conductor vs time

High Temperature profile in cross-section The beam axis in the model is a vertical line (not shown) just to the left of the shape in the figure

BARTOSZEK ENGINEERING 29 Conclusions from thermal analysis l Temperature difference between hot end of pulse and cool end are not that different. l Heating of the inner conductor elongates it and pushes end cap along beam axis, putting itself in compression and the end cap in bending l There are only two areas of the horn that see significant stress »Middle of the end cap »Welded region immediately upstream of end cap

BARTOSZEK ENGINEERING 30 Magnetic Force FEA l Magnetic forces were modeled in the 2D axisymmetric model as element pressures using an analytical expression for the pressure as a function of radius in the horn. This model was verified by a 3D 10  sector model of the horn. l We needed to model the magnetic forces in the 2D model to be able to combine thermal and magnetic stress effects.

Stress intensity caused by high temperature + magnetic force loads on horn end cap Stress units above are Pascals.

BARTOSZEK ENGINEERING 32 Conclusions from magnetic + thermal analysis l The magnetic field creates a pressure normal to the surface the current is flowing through l The magnetic field pressure is non-linear and maximum at small radii. l Stress ratio in the welded neck is ~ -.16 (low temperature thermal stress is small compression) l Stress ratio in the end cap varies from -.3 near beam axis to.5 at middle

BARTOSZEK ENGINEERING 33 Results of Finite Element Analysis l The following plot is a graph of the ratio of calculated principal normal stress to allowable stress for every element in the horn axisymmetric model »Stresses have not been combined in this graph »Values are maximum of S 1 and S 3 only l Allowable stress has been derated for moisture and welding everywhere

Summary graph for uncombined principal normal stresses

BARTOSZEK ENGINEERING 35 Combined Stress Results l The following graph presents the same results, but the principal normal stresses have been combined by the equation shown above l Allowable stress corrected for moisture everywhere, but welding only where appropriate in horn l The places where the ratio is >1 are welded areas that we have since thickened as a result of this analysis l Any stress value over 20% of allowable is in the inner conductor smallest radius tube section

Summary graph for combined stress data

BARTOSZEK ENGINEERING 37 Conclusion l After correcting the thickness of the welded region upstream of the end cap, the graphs indicate that the stress level everywhere in the horn during pulsing is below the maximum set by the 97.5% confidence level that the material will not fail in 2e8 cycles.