Pulse Shape Analysis with Segmented Germanium Detector Xiang Liu, Max-Planck-Institut für Physik 1.Motivation 2.Pulse properties 3.Analysis procedure 4.Some.

Slides:



Advertisements
Similar presentations
POLARIMETRY of MeV Photons and Positrons Overview Beam Characterization – undulator photons – positrons Basics of the Transmission Method – for photon.
Advertisements

Towards a Pulseshape Simulation / Analysis Kevin Kröninger, MPI für Physik GERDA Collaboration Meeting, DUBNA, 06/27 – 06/29/2005.
Advanced GAmma Tracking Array
Key features: special electric field configuration usage of mirror pulses induced on contacts which do not collect charge Surface events and i nactive.
SmartPET: A Small Animal PET Demonstrator using HyperPure germanium Planar Detectors R. Cooper 1 st year PhD Student
High granularity to reduce the effect of the “prompt flash” radiation Polarization sensitivity Imaging capabilities for background suppression DESPEC (DEcay.
Summary TG-10 MC & Background
GERDA: GERmanium Detector Array
Geant4 simulations for the calorimeter prototypes D. Di Julio, J. Cederkäll, P. Golubev, B. Jakobsson Lund University, Lund, Sweden.
30 March Global Mice Particle Identification Steve Kahn 30 March 2004 Mice Collaboration Meeting.
Geant4 simulations for the calorimeter prototypes D. Di Julio, J. Cederkäll, P. Golubev, B. Jakobsson Lund University, Lund, Sweden.
Compton Identification Within Single ‘Pixels’ D. Scraggs, A. Boston, H. Boston, R. Cooper, J. Cresswell, A. Grint, A. Mather, P. Nolan University of Liverpool.
GEANT4 simulations for the Lund R 3 B prototype Douglas Di Julio Lund University, Lund, Sweden.
Signal Analysis and Processing for SmartPET D. Scraggs, A. Boston, H Boston, R Cooper, A Mather, G Turk University of Liverpool C. Hall, I. Lazarus Daresbury.
Simulations with MEGAlib Jau-Shian Liang Department of Physics, NTHU / SSL, UCB 2007/05/15.
Anthony Sweeney Position Sensitive Detectors 9 Aberystwyth 2011.
Wednesday, May 9 th 2007Torsten Beck Fast Pulse Shape Analysis for AGATA-Germanium- Detectors Torsten BeckWednesday, 9. Mai 2007 Student seminar Wednesday,
GERmanium Detector Array – a Search for Neutrinoless Double Beta Decay X. Liu - MPI für Physik, München Symposium – symmetries and phases in the universe,
Diana Parno – July 22, 2008 January PREx Test Run: Compton Photon Analysis Diana Parno Carnegie Mellon University HAPPEX Collaboration Meeting.
Temperature Dependence of the Crystal Properties of 18-fold Segmented HPGe Detector Allen Caldwell, Daniel Lenz, Jing Liu, Xiang Liu, Bela Majorovits,
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
A screening facility for next generation low-background experiments Tom Shutt Laura Cadonati Princeton University.
Task Group 2 Iris Abt, Michael Altmann, Kevin Kroeninger, Bela Majorovits, Franz Stelzer, Xiang Liu 1.Detector Development 2.Suspension & Cabling 3.MC.
GERMANIUM GAMMA -RAY DETECTORS BY BAYAN YOUSEF JARADAT Phys.641 Nuclear Physics 1 First Semester 2010/2011 PROF. NIDAL ERSHAIDAT.
Surface events suppression in the germanium bolometers EDELWEISS experiment Xavier-François Navick (CEA Dapnia) TAUP Sendai September 07.
Sensitivity to half life of 0νββ decay (left) and to effective Majorana neutrino mass (right) of an experiment as a function of exposure for different.
Planned Transregional Collaborative Research Center TR27: Neutrinos and Beyond Project A4: Development of segmented germanium detectors for the investigation.
Monte Carlo Studies on Possible Calibration Sources Kevin Kröninger, MPI für Physik GERDA Collaboration Meeting, DUBNA, 06/27 – 06/29/2005.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Béla Majorovits for the GERDA collaboration ICHEP 2012, Melbourne, Australia, July Béla Majorovits for the GERDA collaboration Status and plans.
What is MaGe? MJ outputGERDA output MaGe is a Monte Carlo simulation package dedicated to experiments searching for 0 2  decay in 76 Ge. Created by the.
Half Day IoP Meeting: Neutrinoless Double Beta Decay, University College London, Great Britain The GERDA Experiment at Gran Sasso Grzegorz Zuzel.
Experiment TGV II Multi-detector HPGe telescopic spectrometer for the study of double beta processes of 106 Cd and 48 Ca For TGV collaboration: JINR Dubna,
Charge Collection and Trapping in Epitaxial Silicon Detectors after Neutron-Irradiation Thomas Pöhlsen, Julian Becker, Eckhart Fretwurst, Robert Klanner,
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
Ge Test-stands at MPI Munich Xiang Liu 1.General 2.Crystals, Test-stands & Results 3.Outlook.
Development of a Segmented Planar Germanium Imaging Detector
Experiment [1] M. Di Marco, P. Peiffer, S. Schonert, LArGe: Background suppression using liquid argon scintillation for 0νββ - decay search with enriched.
Stefano Pirro – NuMass 2010 Stefano Pirro Double beta decay searches with enriched and scintillating bolometers - Milano - Bicocca The Future of Neutrino.
Searching for Lightly Ionizing Particles. Searches for Lightly Ionizing Particles The low energy threshold allows us to search for energetic Lightly Ionizing.
BACKGROUND REJECTION AND SENSITIVITY FOR NEW GENERATION Ge DETECTORS EXPERIMENTS. Héctor Gómez Maluenda University of Zaragoza (SPAIN)
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
Tracking Background GRETINA Software Working Group Meeting September 21-22, 2012, NSCL MSU I-Yang Lee Lawrence Berkeley National Laboratory.
Timing in Thick Silicon Detectors Andrej Studen, University of Michigan, CIMA collaboration.
A screening facility for next generation low-background experiments Tom Shutt Case Western Reserve University.
GERDA – a Search for Neutrinoless Double Beta Decay MPI für Physik, München Neutrinoless double beta decay and the GERDA experimentThe detector array and.
PSA: ADAPTIVE GRID SEARCH The Method Experimental Results Optimization aspects Roberto Venturelli (INFN Padova - IPSIA “Giorgi” Verona) SACLAY, 05-may-06.
M.Altmann, GERDA Status Report SNOLAB Workshop IV, Investigating Neutrinoless Double Beta Decay Status of the GERDA Experiment Michael Altmann.
Steven Moon, A.J. Boston, H. Boston, J. Cresswell, L. Harkness, D. Judson, P.J. Nolan PSD9, Aberystwyth, Wales th September 2011 Compton imaging.
PMN07 Blaubeuren Segmented germanium detectors in 0νββ-decay experiments Kevin Kröninger (Max-Planck-Institut für Physik, München)
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
Institute of Basic Science Rare Isotope Science Project PANGEA P hoton detector system for A stro-science and N uclear physics with GE rmanium A rray 2015.
MPI für Physik, Fachbeirat, Béla Majorovits The GERDA experiment Béla Majorovits.
SIMULATION OF BACKGROUND REDUCTION TECHNIQUES FOR Ge DBD DETECTORS Héctor Gómez Maluenda. University of Zaragoza. GERDA/Majorana MC Meeting.
Neutrinoless double beta decay (0  ) CdTe Semico nductor Band gap (eV) Electron mobility (cm 2 /V/s) Hole mobility (cm 2 /V/s) Density (g/cm 3.
3D Diamond Detectors: Update on Current Work Steven A. Murphy 16 th July 2014.
Manoj B. Jadhav Supervisor Prof. Raghava Varma I.I.T. Bombay PANDA Collaboration Meeting, PARIS – September 11, 2012.
Study of PC-HPGe detector for dark matter search CDEX collaboration Application of Germanium Detector in Fundamental Research Apr. 7-13,2013.
Towards pulse shape calculation and analysis for the GERDA experiment Kevin Kröninger, MPI für Physik International School of Nuclear Physics, Erice 2005.
What you need to design a detector: Principle of Field Calculation and Pulse Shape Simulation Jing Liu Kavli IPMU, University of Tokyo 8 Apr. 2013, Tuebingen.
Guojian Wang University of South Dakota
GLAST LAT tracker signal simulation and trigger timing study
Deep learning possibilities for GERDA
Summary of the Compton-PET project
Pre-Test-stands at MPI Munich
Preliminary Compton Imaging results of the AGATA C001 detector
AGATA week Uppsala, July 2008
GERDA Test Stands for Segmented Germanium Detectors
Gain measurements of Chromium GEM foils
Presentation transcript:

Pulse Shape Analysis with Segmented Germanium Detector Xiang Liu, Max-Planck-Institut für Physik 1.Motivation 2.Pulse properties 3.Analysis procedure 4.Some results 5.Outlook Physics of Massive Neutrinos, Blaubeuren, July 1-5, 2007

Motivation: Single-site vs. Multi-site Blaubeuren, July 1-5, 2007Page 2 Photon: Multiple Compton scattering  mean free path ~ cm 0 2  : energy deposit locally, within 1mm. 208 Tl 2614keV photon (Geant4 simulation) 0 2  : 2 electrons Range log(R [mm]) NIM A 570 (2007) SSE MSE

Motivation: 3-D segmentation along z,  & r Blaubeuren, July 1-5, 2007Page 3 GERDA Phase-II prototype detector: 18 segments (3 fold along z, 6 along  ) No segment along r, technically impossible  Pulse Shape Analysis (PSA) Electrons & holes drift along the applied field at ~1cm/100ns, inducing charge in electrodes.  Rising part of the pulse contains information about energy deposit locations.

Pulse shape properties Blaubeuren, July 1-5, 2007Page 4 Single site event (SSE): Multiple site event (MSE): MSE tends to have more complicated pulse structures. Knee indicates that one type of charge carriers reach electrode.

Pulse shape analysis procedure Blaubeuren, July 1-5, 2007Page 5 SSE candidate MSE candidate PSA procedure: 1.Collect SSE and MSE-dominant samples, independent of pulse shapes. 2.Study the PS difference, define discriminator. 3.Use discriminator to identify signal and background. Test stand with 18-fold Ge detector

Collecting SSE sample: Blaubeuren, July 1-5, 2007Page 6 Double escape events (DEP): one electron and one positron with sum energy 1592keV Single Compton scattering events: single electron with energy 2039keV 2614keV

Pulse shape analysis packages Blaubeuren, July 1-5, 2007Page 7 Likelihood method:  pulse rise time 10-90%  pulse rise time 10-30%  current FWHM  current asymmetry Neural Network method: sampled pulses as input (most efficient) Define discriminator Library method: use collected SSE sample as reference library

Neural Network PSA results Blaubeuren, July 1-5, 2007Page 8 SamplesDEP RoI Fraction identified by NN as signal89%54%44%81% MC simulation: Fraction with R 90 <2mm89%55%30%78% Single segment events DEP 1592keV Bi-212  1620keV

Outlook1: Pulse shape simulation Blaubeuren, July 1-5, 2007Page 9 Need simulation to understand: energy deposit range  pulse shape Understand second order effects:  charge carrier drifting velocity depends on crystal axis,  impurity concentration & non-uniformity,  trapping,  preamplifier bandwidth,  … Close collaboration with Majorana MC group NIM A577 (2007) 574 [Nucl-ex/ ]

Outlook2: New test stand under construction Blaubeuren, July 1-5, 2007Page 10 Both Ge detector and source in Vacuum:  photon    UV laser   3-D scan of the detector  Detector properties  Mirror charge (next page) Identify surface  Identify multi-segment signals

Outlook3: application example: Mirror charge Blaubeuren, July 1-5, 2007Page 11 Mirror charge from neighboring segments gives additional information along z & .  enhance MSE identification  identify signal at segment boundaries phiz Mirror charge amplified by factor of 5

Conclusion Blaubeuren, July 1-5, 2007Page 12 Measurement with 18-fold Ge detector proves the technique and its ability for background identification. NIM A577 (2007) 574[nucl-ex/ ], nucl-ex/ First analysis proves that properly-trained pulse shape analysis package identifies most multi-site background events. arXiv: A new test stand is under construction at MPI Munich, where segmented Ge detector will be studied in detail with , , e sources and UV laser. With detailed simulation and mirror charge, PSA is expected to further identify photon and surface backgrounds improve signal efficiency

Backup2: NN PSA results with DEP, continued Blaubeuren, July 1-5, 2007Page 13 Fraction of SSE (MSE) as correctly identified by NN as SSE (MSE):

Backup1: NN PSA results with DEP Blaubeuren, July 1-5, 2007Page 14 Fraction of SSE: Fraction identified by NN as SSE:

Backup2: Pulse shape analysis packages Blaubeuren, July 1-5, 2007Page 15

Backup3: Mirror charge Blaubeuren, July 1-5, 2007Page 16 Mirror charge asymmetry of neighbor segments: NIM doi: /j.nima [Nucl-ex/ ]