High performance 110 nm InGaAs/InP DHBTs in dry-etched in-situ refractory emitter contact technology Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.

Slides:



Advertisements
Similar presentations
Development of THz Transistors & ( GHz) Sub-mm-Wave ICs , fax The 11th International Symposium on.
Advertisements

The state-of-art based GaAs HBT
2007 DRC Ultra Low Resistance Ohmic Contacts to InGaAs/InP Uttam Singisetti*, A.M. Crook, E. Lind, J.D. Zimmerman, M. A. Wistey, M.J.W. Rodwell, and A.C.
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Y. Wei, M. Urteaga, Z. Griffith, D. Scott, S. Xie, V. Paidi, N. Parthasarathy, M. Rodwell. Department of Electrical and Computer Engineering, University.
Device Research Conference 2011
High Current Density and High Power Density Operation of Ultra High Speed InP DHBTs Mattias Dahlström 1, Zach Griffith, Young-Min Kim 2, Mark J.W. Rodwell.
In-situ and Ex-situ Ohmic Contacts To Heavily Doped p-InGaAs TLM Fabrication by photolithography and liftoff Ir dry etched in SF 6 /Ar with Ni as etch.
Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan, D. Scott, T. Mathew, Y. Wei, M. Dahlstrom, S. Lee, M. Rodwell. Department.
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
NAMBE 2010 Ashish Baraskar, UCSB 1 In-situ Iridium Refractory Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain, Evan Lobisser, Brian Thibeault,
DRC mS/  m In 0.53 Ga 0.47 As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg.
IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur.
Submicron InP Bipolar Transistors: Scaling Laws, Technology Roadmaps, Advanced Fabrication Processes Mark Rodwell University of California, Santa Barbara.
Ashish Baraskar 1, Mark A. Wistey 3, Evan Lobisser 1, Vibhor Jain 1, Uttam Singisetti 1, Greg Burek 1, Yong Ju Lee 4, Brian Thibeault 1, Arthur Gossard.
2010 Electronic Materials Conference Ashish Baraskar June 23-25, 2010 – Notre Dame, IN 1 In-situ Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain,
High speed InP-based heterojunction bipolar transistors Mark Rodwell University of California, Santa Barbara ,
1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell.
Device Research Conference 2006 Erik Lind, Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University of California,
40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of.
1 In 0.53 Ga 0.47 As MOSFETs with 5 nm channel and self-aligned source/drain by MBE regrowth Uttam Singisetti PhD Defense Aug 21, 2009 *
2013 IEEE Compound Semiconductor IC Symposium, October 13-15, Monterey, C 30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected.
1 LW 6 Week 6 February 26, 2015 UCONN ECE 4211 F. Jain Review of BJT parameters and Circuit Model HBT BJT Design February 26, 2015 LW5-2 PowerPoint two.
InP Bipolar Transistors: High Speed Circuits and Manufacturable Submicron Fabrication Processes , fax 2003.
Single-stage G-band HBT Amplifier with 6.3 dB Gain at 175 GHz M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department of Electrical.
87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy.
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
Frequency Limits of Bipolar Integrated Circuits , fax Mark Rodwell University of California, Santa Barbara.
Student Paper Finalist TU3B-1
Rodwell et al, UCSB: Keynote talk, 2000 IEEE Bipolar/BICMOS Circuits and Technology Meeting, Minneapolis, September Submicron Scaling of III-V HBTs for.
M. Dahlström, Z. Griffith, M. Urteaga, M.J.W. Rodwell University of California, Santa Barbara, CA, USA X.-M. Fang, D. Lubyshev, Y. Wu, J.M. Fastenau and.
W-band InP/InGaAs/InP DHBT MMIC Power Amplifiers Yun Wei, Sangmin Lee, Sundararajan Krishnan, Mattias Dahlström, Miguel Urteaga, Mark Rodwell Department.
V. Paidi, Z. Griffith, Y. Wei, M. Dahlstrom,
Chart 1 A 204.8GHz Static Divide-by-8 Frequency Divider in 250nm InP HBT Zach Griffith, Miguel Urteaga, Richard Pierson, Petra Rowell, Mark Rodwell*, and.
University of California Santa Barbara Yingda Dong Characterization of Contact Resistivity on InAs/GaSb Interface Y. Dong, D. Scott, A.C. Gossard and M.J.
III-V HBT device physics: what to include in future compact models , fax Mark Rodwell University of California,
InGaAs/InP DHBTs with Emitter and Base Defined through Electron-beam Lithography for Reduced C cb and Increased RF Cut-off Frequency Evan Lobisser 1,*,
III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
12 nm-Gate-Length Ultrathin-Body InGaAs/InAs MOSFETs with 8
High speed (207 GHz f  ), Low Thermal Resistance, High Current Density Metamorphic InP/InGaAs/InP DHBTs grown on a GaAs Substrate Y.M. Kim, M. Dahlstrǒm,
Frequency Limits of InP-based Integrated Circuits , fax Collaborators (III-V MOS) A. Gossard, S. Stemmer,
Urteaga et al, 2001 Device Research Conference, June, Notre Dame, Illinois Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan,
2009 Electronic Materials Conference Ashish Baraskar June 24-26, 2009 – University Park, PA 1 High Doping Effects on In-situ and Ex-situ Ohmic Contacts.
Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana.
Transistor and Circuit Design for GHz ICs , fax Mark Rodwell University of California, Santa Barbara.
University of California, Santa Barbara
Indium Phosphide and Related Material Conference 2006 Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
Current Density Limits in InP DHBTs: Collector Current Spreading and Effective Electron Velocity Mattias Dahlström 1 and Mark J.W. Rodwell Department of.
Improved Regrowth of Self-Aligned Ohmic Contacts for III-V FETs North American Molecular Beam Epitaxy Conference (NAMBE), Mark A. Wistey Now at.
Developing Bipolar Transistors for Sub-mm-Wave Amplifiers and Next-Generation (300 GHz) Digital Circuits ,
THz Bipolar Transistor Circuits: Technical Feasibility, Technology Development, Integrated Circuit Results ,
185 GHz Monolithic Amplifier in InGaAs/InAlAs Transferred-Substrate HBT Technology M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department.
Device Research Conference 2007 Erik Lind, Adam M. Crook, Zach Griffith, and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
IEEE Bipolar/BiCMOS Circuits and Technology Meeting Zach Griffith, Mattias Dahlström, and Mark J.W. Rodwell Department of Electrical and Computer Engineering.
Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V.
On the Feasibility of Few-THz Bipolar Transistors , fax *Now at University of Texas, Austin Invited Paper,
Indium Phosphide and Related Materials
Uttam Singisetti. , Mark A. Wistey, Greg J. Burek, Ashish K
ISCS 2008 InGaAs MOSFET with self-aligned Source/Drain by MBE regrowth Uttam Singisetti*, Mark A. Wistey, Greg J. Burek, Erdem Arkun, Ashish K. Baraskar,
DOUBLE-GATE DEVICES AND ANALYSIS 발표자 : 이주용
Ultra Wideband DHBTs using a Graded Carbon-Doped InGaAs Base Mattias Dahlström, Miguel Urteaga,Sundararajan Krishnan, Navin Parthasarathy, Mark Rodwell.
A Self-Aligned Epitaxial Regrowth Process for Sub-100-nm III-V FETs A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
20th IPRM, MAY 2008, Versallies-France
Lower Limits To Specific Contact Resistivity
High Transconductance Surface Channel In0. 53Ga0
Ultra Low Resistance Ohmic Contacts to InGaAs/InP
Record Extrinsic Transconductance (2. 45 mS/μm at VDS = 0
Presentation transcript:

High performance 110 nm InGaAs/InP DHBTs in dry-etched in-situ refractory emitter contact technology Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California, Santa Barbara, CA Zach Griffith, Miguel Urteaga Teledyne Scientific & Imaging, Thousand Oaks, CA Sebastian T Bartsch Nanoelectronics Device Laboratory, EPFL, Switzerland D Loubychev, A Snyder, Y Wu, J M Fastenau, W K Liu IQE Inc., 119 Technology Drive, Bethlehem, PA

Outline HBT Scaling Laws Fabrication –Challenges –Process Development DHBT Epitaxial Design Results –DC & RF Measurements Summary 2

Ohmic contacts Lateral scaling Epitaxial scaling Bipolar transistor scaling laws To double cutoff frequencies of a mesa HBT, must: (emitter length L e ) WeWe TbTb TcTc W bc Keep constant all resistances and currents Reduce all capacitances and transit delays by 2 3

InP Bipolar transistor scaling roadmap Emitter Width (nm) 8421 Access ρ (Ω·µm 2 ) Base Contact width (nm) Contact ρ (Ω·µm 2 ) Collector Thickness (nm) Current density mA/µm 2 Breakdown voltage V fτfτ GHz f max GHz Performance Design Evan Lobisser et al, IPRM

Sub-200 nm HBT node: Fabrication Challenges - I Emitter yield drops during base contact, subsequent lift-off steps High stress in emitter metal stack Poor metal adhesion to InGaAs 5 Need for low stress, high yield emitters Fallen emitters

Sub-200 nm HBT node: Fabrication Challenges - II Undercut in emitter semiconductor Helps in Self Aligned Base Liftoff Narrow emitters need controlled semiconductor undercut  Thin semiconductor To prevent short, base metal needs to be thinned  Higher base metal resistance Solution: Undercut in the emitter metal to act as a shadow mask 6 Slow etch plane InP Wet Etch Fast etch plane

Composite Emitter Metal Stack TiW W W/Ti 0.1 W 0.9 metal stack Low stress Refractory metal emitters Vertical dry etch profile W emitter Erik Lind Evan Lobisser TiW emitter 7

Junction Width via SEM, TEM W TiW BC SiN x BCB M1 200 nm 110 nm 100 nm 100 nm emitter metal-semiconductor junction 110 nm emitter-base junction 8

In-situ Emitter Contact Highly doped n-InGaAs regrown on IQE InGaAs and in-situ Mo deposited Active carriers ~ 5×10 19 cm -3 In-situ Mo deposition on n-InGaAs -  c ~ 1.1 .  m 2 * In-situ deposition  repeatable contact resistivity In-situ Mo contacts*  c ~ 1.1 .  m 2 * A. Baraskar et al., J. Vac. Sci. Tech. B, 27, 4,

Process flow Regrown InGaAs emitter cap In-situ Mo dep W/TiW/SiO 2 /Cr dep SF 6 /Ar etch SiN x Sidewall SiO 2 /Cr removal InGaAs Wet Etch Second SiN x Sidewall InP Wet Etch Base Contact Lift-off W/TiW interface acts as shadow mask for base lift off Base and collector formed via lift off and wet etch BCB used to passivate and planarize devices 10 Self-aligned process flow for 110 nm DHBT

Epitaxial Design T(nm)MaterialDoping (cm -3 )Description 10In 0.53 Ga 0.47 As 5  : Si Regrown Cap 10In 0.53 Ga 0.47 As 5  : Si Emitter Cap 10InP 4  : Si Emitter 10InP 1  : Si Emitter 30InP 8  : Si Emitter 25In 0.53 Ga 0.47 As 7-4  : C Base 7.5In 0.53 Ga 0.47 As 9  : Si Setback 15InGaAs / InAlAs 9  : Si B-C Grade 3InP 5  : Si Pulse doping 74.5InP 9  : Si Collector 7.5InP 1  : Si Sub Collector 7.5In 0.53 Ga 0.47 As 2  : Si Sub Collector 300InP 2  : Si Sub Collector SubstrateSI : InP V be = 1 V, V cb = 0.7 V, J e = 0, 30 mA/  m 2 Thin emitter semiconductor  Enables wet etching High collector doping  High Kirk threshold 11

Results - DC Measurements BV ceo = 2.5 J e = 1 kA/cm 2 β = 18 Base ρ sheet = 730 Ω/□, ρ c < 4 Ω·µm 2 Collector ρ sheet = 12 Ω/□, ρ c = 9 Ω·µm f t,f max J e = 23.1 mA/  m 2 P = 41 mW/  m 2 12 Peak f t,f max Gummel plot Common emitter I-V

DUT Short Results - RF Measurements using Off-Wafer LRRM Open G SG Standard Off Wafer LRRM Open & Short Pad Cap Extraction 13 * Koolen et al., IEEE BCTM 1991

1-67 GHz RF Data and Extrapolated Cutoff Frequencies I c = 8.9 mA V ce = 1.74 V J e = 23.1 mA/  m 2 V cb = 0.7 V Single-pole fit to obtain cut-off frequencies 14

Parameter Extraction 15 J kirk = 32 mA/  m 2 cb = 0.7V) C cb /I c = 0.43 psec/V

Equivalent Circuit Hybrid-  equivalent circuit from measured RF data R ex ≈ 3.6  m 2 16

Microstrip Style TRL Calibration Ref Plane for TRL t ~ 1  m h ~ 1  m w ~ 1.7  m BCB AA’ A – A’ Metal 1 Ref Plane set at device edge No further de-embedding required 17 Collector Metal

GHz RF data -20dB/decade fit to obtain cut-off frequencies 18 I c = 9.1 mA V ce = 1.75 V J e = 23.6 mA/  m 2 V cb = 0.7 V

Conclusion Demonstrated smallest junction width for a III-V DHBT (110 nm) Peak f t /f max = 465/660 GHz – J e = 23.6 mA/  m 2 – Power Density (P) = 41 mW/  m 2 High current and power density operation (P > 50 mW/  m 2 ) 19

Questions? Thank You This work was supported by the DARPA THETA program under HR C-0060 and DARPA TFAST under N C A portion of this work was done in the UCSB nanofabrication facility, part of NSF funded NNIN network and MRL Central Facilities supported by the MRSEC Program of the NSF under award No. MR