Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.

Slides:



Advertisements
Similar presentations
Creating new states of matter:
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Dynamics of Spin-1 Bose-Einstein Condensates
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Fermi-Bose and Bose-Bose quantum degenerate K-Rb mixtures Massimo Inguscio Università di Firenze.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
H 2 CO OH H2OH2O HCO QED e- Quantum dipolar gas Precision test Chemical reactions Quantum measurement Cold and Ultracold Molecules EuroQUAM, Durham, April.
Coherence, Dynamics, Transport and Phase Transition of Cold Atoms Wu-Ming Liu (刘伍明) (Institute of Physics, Chinese Academy of Sciences)
Understanding Feshbach molecules with long range quantum defect theory Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland EuroQUAM.
Making cold molecules from cold atoms
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Observation of universality in 7 Li three-body recombination across a Feshbach resonance Lev Khaykovich Physics Department, Bar Ilan University,
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Temperature scale Titan Superfluid He Ultracold atomic gases.
Cold Atomic and Molecular Collisions
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Experiments with ultracold atomic gases
ATOM-ION COLLISIONS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 20 February 2008 Institute for Theoretical Physics, University.
Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic.
INTRODUCTION TO PHYSICS OF ULTRACOLD COLLISIONS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 14 February 2008 Institute for.
Three-body recombination at vanishing scattering lengths in ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel.
Photoassociation Spectroscopy of Ultracold Molecules Liantuan XIAO State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser.
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
Photoassociation Spectroscopy of Ytterbium Atoms with Dipole-allowed and Intercombination Transitions K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, T. Fukuhara,
November 12, 2009 | Christian Stahl | 1 Fermion-Fermion and Boson-Boson Interaction at low Temperatures Seminar “physics of relativistic heavy Ions” TU.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
E. Kuhnle, P. Dyke, M. Mark, Chris Vale S. Hoinka, Chris Vale, P. Hannaford Swinburne University of Technology, Melbourne, Australia P. Drummond, H. Hu,
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
Ultracold Polar Molecules in Gases and Lattices Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland Quantum Technologies Conference:
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Experimental study of Efimov scenario in ultracold bosonic lithium
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Efimov physics in ultracold gases Efimov physics in ultracold gases Rudolf Grimm “Center for Quantum Optics” in Innsbruck Austrian Academy of Sciences.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Ultracold Helium Research Roel Rozendaal Rob van Rooij Wim Vassen.
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Ingrid Bausmerth Alessio Recati Sandro Stringari Ingrid Bausmerth Alessio Recati Sandro Stringari Chandrasekhar-Clogston limit in Fermi mixtures with unequal.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Pairing Gaps in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems Cheng Chin JFI and Physics, University of Chicago Exp.: Rudolf.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
The 4th Yamada Symposium Advanced Photons and Science Evolution
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
The Center for Ultracold Atoms at MIT and Harvard Strongly Correlated Many-Body Systems Theoretical work in the CUA Advisory Committee Visit, May 13-14,
Subir Sachdev Superfluids and their vortices Talk online:
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
Agenda Brief overview of dilute ultra-cold gases
Deterministic preparation and control of a few fermion system.
Extremely dilute, but strongly correlated: Experiments with ultracold fermions.
Center for Quantum Physics Innsbruck Center for Quantum Physics Innsbruck Austrian Academy of Sciences Austrian Academy of Sciences University strongly.
Quantum simulations with cold atoms: from solid-state to high-energy physics and cosmology Vladimir S. Melezhik Bogoliubov Laboratory of Theoretical Physics.
strongly interacting fermions: from spin mixtures to mixed species
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
Spin-Orbit Coupling Effects in Bilayer and Optical Lattice Systems
Making cold molecules from cold atoms
Spectroscopy of ultracold bosons by periodic lattice modulations
Presentation transcript:

Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International Symposium on Molecular Spectroscopy, Columbus, OH, June 22, 2007 Thanks to Eite Tiesinga (NIST), Svetlana Kotochigova (Temple/NIST) Bo Gao (U. Toledo), Thorsten Köhler (Oxford) Roman Ciurylo (Torun), Pascal Naidon (NIST) M. Kitagawa, K. Enomoto, K. Kasa, Y. Takahashi (Kyoto University) Looking for good students/postdocs Joint Quantum Institute, NIST/University of Maryland

Cold alkali atoms and molecules Widely used in forefront experiments Ultra-cold Bose or Fermi gases Optical lattices and reduced dimensional structures Precision measurements Multidisciplinary studies and applications Complex calculations required coupled channels methods ab initio structure and properties But remain amenable to simple models based on long range potentials Control interaction properties by static or dynamic electromagnetic fields s-wave scattering length (a quantum phase shift)

1 pK 1 nK 1  K 1 mK 1 K 1000 K 10 6 K 10 9 K Surface of sun Room temperature Outer space (3K) Laser cooled atoms Bose-Einstein condensates Interior of sun Atomic clock atoms Fermionic quantum gases Cold He Molecules Buffer gas cooling Decelerated beams Photoassociated atoms Feshbach molecules Molecular BEC 1 neV

Grou From Wolfgang Ketterle Group, MIT 23 Na BEC BEC of molecules of paired 6 Li Superfluid pairing of 6 Li atoms

An Optical Lattice Laser 1 Laser 2 2 atoms in a cell Typical well depth, 100 kHz /2

from H. T. C. Stoof, in News and Views, Nature 415, 25 (2002) Put a BEC in a Lattice 40 K 87 Rb 87 Rb 2 Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms Greiner, Mandel, Esslinger, Haensch, and Bloch Nature 415, 39, (2002)

A+B AB Long range 1/R n “simple” analytic long-range theory Asymptotic Properties of separated species “simple” Measured Ab initio eV (1 mK) Chemistry eV Semi-empirical Ab initio “Complex” Ground state And Collision complex Optical transfer

“Size” of -C 6 /R 6 van der Waals potential V(R) See Jones, Lett, Tiesinga, Julienne, Rev. Mod. Phys. 78, 483 (2006)

Adapted from Gao, Phys. Rev. A 62, (2000); Figure from E. Tiesinga Bound states from van der Waals theory

Noninteracting atoms Interacting atoms See Jones, Lett, Tiesinga, Julienne, Rev. Mod. Phys. 78, 483 (2006)

6 Li a+b mixture

6 Li 2 M=0 s-wave Methodology: Coupled channels methods with full Hamiltonian Simplified models based on long-range properties

Data: M. Bartenstein, et al., Phys. Rev. Lett. 94, (2005) ab ac Chin and Julienne, PRA 71, (2005)

From M. Bartenstein, et al., Phys. Rev. Lett. 94, (2005) 1  g + scattering length: (8) a 0 3  u + scattering length: -2140(18) a 0 ab resonance: 834.1(1.5) Gauss ac resonance: 690.4(5) Gauss

6 Li a+b Scattering Length vs. B Model from Bartenstein et al., PRL 94, (2005) 543 G 834 G

Closed channel dominated Open channel dominated Julienne and Gao, Atomic Physics 20, AIP, (2006) and physics/ sin 2  (E,B)

Leo, Williams, Julienne, Phys. Rev. Lett. 85, 2721 (2000) Vuletic, Kerman, Chin, Chu, Phys. Rev. Lett. 85, 2717 (2000)) Cesium threshold resonance spectroscopy 5 mK trap Tune magnetic field Measure collision rates Fit theoretical model parameters * * * * * A( 1  g + ) = +280(10) a 0 A( 3  u + ) = +2400(100) a 0 C 6 = 6890(35) a.u.

6 Li ab M=0 133 Cs aa M=+6 87 Rb aa M=+2 23 Na aa M=+2

From M. Kitagawa, K. Enomoto, K. Kasa, Y. Takahashi (Kyoto University)

All-optical Yb trap Few  K 2-color photoassociation

12 PA lines among 6 different isotopes

C 6 + N C8C8 Model: LJ C 8 van der Waals 1 potential + reduced mass C 6 =1932(15) au C 8 =1.9(5)x10 5 au N=72 bound states in 174 Yb 2

Last bound state energies versus mass Solid: J=0 Dashed: J=2 fit

Scattering lengths for Yb ground state model (in a 0 units) (6) 117(1) 89(1) 65(1) 39(1) 2(2) -360(30) (1) 37(1) -2(2) -81(4) -520(50) 209(4) (2) -84(5) -580(60) 430(20) 142(2) (60) 420(20) 201(3) 106(1) (3) 139(2) 80(1) (1) 55(1) (2)

Variation of scattering length with mass Enomoto et al., PRL, 98, (2007)

Gribakin and Flambaum Phys. Rev. A 48, 546 (1993) Number of bound states in V(R) =

Pure van der Waals theory (Gribakin-Flambaum and B. Gao)

Species Spin % Abundance 84 Sr Sr Sr 9/ Sr Ba Ba Ba Ba 3/ Ba Ba 3/ Ba Species Spin % Abundance 106 Cd Cd Cd Cd 1/ Cd Cd 1/ Cd Cd Hg Hg Hg 1/ Hg Hg 3/ Hg Hg 0 6.9