Genetics Review Objectives 1-5.

Slides:



Advertisements
Similar presentations
Intro to Genetics.
Advertisements

Advanced Biology Unit 3.
Genetics Chapter 11.
Exploring Unlinked Genes to Sex-Linked Genes
Copyright © 2007 Stevens Institute of Technology Center for Innovation in Engineering and Science Education.
Human Genetics: Dominant & Recessive Traits. The physical characteristics below are common genetic traits inherited from one generation to the next: The.
Human Genetics What Genes do you have?. What is a trait? “Your Mom gives you ½ of the instructions, your Dad gives you the other ½.” In science jargon:
Incomplete Dominance Neither allele is completely dominant over the other allele. The phenotype is heterozygous A mixture or blending of the two What two.
Genetics Experiments With Pea Plants
Unit 6 Genetics: the science of heredity
Mendelian Genetics.
Gregor Mendel and Genetics
Genetics The study of heredity.
Genetics The Study of Heredity.
Allele Genotype vs. Phenotype Flashcard Warm-up
What information can be revealed by a Punnett square. A
Mendelian Patterns of Inheritance
Do Now Answer the questions below in your notebook/binder:
Genetics The study of heredity.
Genetics Notes Who is Gregor Mendel? Principle of Independent Assortment – Inheritance of one trait has no effect on the inheritance of another trait “Father.
Genetics.
Genetics. Objectives  ________’s Experiments and Laws Inheritance  ________ Square to determine genotype and phenotype ratios of a cross  Types of.
Fundamentals of Genetics
Heredity: The passing of characteristics from parents to offspring.
GENETICS DEVELOPED FROM CURIOSITY ABOUT INHERITANCE
Mendel, Genes and Gene Interactions §The study of inheritance is called genetics. A monk by the name of Gregor Mendel suspected that heredity depended.
Punnett Squares and Probability. What is a punnett square and why do we use it? What is it?  A grid system for predicting all possible genotypes of offspring.
Genetics Chapter 11. History of Genetics  Gregor Mendel “Father of genetics” a monk who studied inheritance traits in pea plans worked with.
With your group on a piece of paper answer the following questions What do you think of when you hear the word “genetics”? What are 3 examples of a trait?
Incomplete Dominance Co-dominance Multiple Alleles Sex-linked Traits.
Everything you need to know about Genetics
Heredity: The passing of characteristics from parents to offspring.
Hosted by; Yours Truly Punnett Predictions Curious Crosses Genetic Gems Pedigrees Problems
The Work of Gregor Mendel & Applying Mendel’s PrinciplesGregor Mendel Unit 5C Genetic Inheritance.
Mendelian Genetics. How Genetics Began A monk named Gregor Mendel first studied how certain traits could be passed on by studying his pea plants. Heredity.
BIO.B.2- GENETICS CHAPTER 11. B2: Genetics 1. Describe and/ or predict observed patterns of inheritance i.e. dominant, recessive, co-dominant, incomplete.
Genetic Inheritance Chapter 20. Objectives  Predict and interpret patterns of inheritance.  Demonstrate possible results of sexually recombination with.
Fundamentals of Genetics
CH 9 FUNDAMENTALS OF GENETICS. Genetics  What is it? Define it in your notebook with a partner.  Field of biology devoted to understanding how characteristics.
CHAPTER 7 KEY TERMS GeneticsPurebred CrossHybrid DominantRecessive PhenotypeGenotype GameteCarrier Inherited DisorderSex-Linked Trait RegenerationCodominance.
CH 9 FUNDAMENTALS OF GENETICS. Genetics  What is it?  Define it in your notebook with a partner.  Field of biology devoted to understanding how characteristics.
Genetics and Heredity (Mendelian). History Genetics is the study of genes. Genetics is the study of genes. Inheritance is how traits, or characteristics,
Chapter 12: Mendel and Heredity. Heredity – The passing of traits from parents to offspring Genetics – The study of heredity.
Mendelian Inheritance. A Mendelian trait is a trait that is controlled by a single gene that has two alleles. One of these alleles is dominant and the.
Core Concepts Mendel’s Law of Segregation states that there are two alleles for every gene determining a specific characteristic, and these alleles are.
Genetics Part I: Mendel and Basics Unit 7. How does this happen?
Chapter 11: Introduction into Genetics Mr. Freidhoff.
Fundamentals of Genetics. Gregor Mendel  Gregor Mendel was a monk in mid 1800’s who discovered how genes were passed on.  He used peas to determine.
Heredity is the passing of characteristics from parents to offspring Trait – a characteristic that is inherited Example: –Hair color is a characteristic.
Gregor Mendel Gregor Mendel was a monk who studied heredity using pea plants He came up with a couple of laws for determining heredity.
Review of Patterns of Inheritance Gregor Mendel’s Principles 1. Principle of Dominance 2. Law of Segregation – each parent has 2 alleles for a trait but.
GENETICS THE STUDY OF HEREDITY. HEREDITY  HOW CHARACTERISTICS ARE PASSED FROM GENERATION TO GENERATION.
Chapter 8 Genetics. Detached Earlobes Rolling Tongue DimplesRight - handed FrecklesCurly Hair AllergiesLeft over Right See green and red Straight Hairline.
Mendel’s Theory Notes. Who is Mendel? Mendel: an Austrian monk who completed a series of genetics experiments on pea plants.
Genetics The Wonder of Heredity. What is Genetics?  Genetics is the study of heredity  Heredity is the passing of traits from parents to offspring 
Patterns of Inheritance Chapter 9. Genetics The science of heredity. A distinct genetic makeup results in a distinct set of physical and behavioral characteristics.
Genetics The Wonder of Heredity. What is Genetics?  Genetics is the study of heredity  Heredity is the passing of traits from parents to offspring 
Mendel's Genetics.
Biology MCAS Review: Mendelian Genetics
Genetics Review.
GENETICS AND HEREDITY.
Chapter 11 - Genetics Created by Educational Technology Network
Genetics Notes Who is Gregor Mendel? “Father of Genetics”
Patterns of Inheritance
PREDICTING THE INHERITANCE OF GENETIC TRAITS
Welcome to Jeopardy! Today’s Topic: Genetics
Mendel and Punnett Squares
Incomplete and Codominance
Exceptions to Mendelian Inheritance
Presentation transcript:

Genetics Review Objectives 1-5

Define genotype Define phenotype Objective 1 - Distinguish between the following pairs of terms: dominant and recessive; heterozygous and homozygous; genotype and phenotype. Define genotype Define phenotype

Answer Genotype –Actual physical DNA make up of an organism. 2) The genetic constitution of an individual, including alleles carried for a particular trait. Compare to phenotype. (i.e. A pea with a round phenotype could have a genotype of RR or Rr). Phenotype - Physical and behavioral characteristics of an organism. 2) An individual's observable form. Compare to genotype. (i.e. A pea with a round phenotype could have a genotype of RR or Rr).

Define homozygous – Define heterozygous -

Answer Homozygous - Having identical alleles for a trait. 2) Carrying two copies of the same allele. Compare to heterozygous. (i.e. A homozygous plant could have the genotype RR or rr). Heterozygous - Having different alleles for a trait. 2) Carrying two different alleles. Compare to homozygous. (i.e. The heterozygous plant has the genotype Rr).

A test cross is used to determine if the genotype of a plant displaying the dominant phenotype is homozygous or heterozygous. You always cross your unknown with a pure recessive (displays the recessive trait) If the unknown is homozygous dominant, all of the offspring of the test cross have the __________ phenotype. If the unknown is heterozygous, half of the offspring will have the __________ phenotype.

Answer dominant, recessive Dominant is expressed if it is present, AA or Aa Recessive is expressed only if the dominant is not present , aa

Monohybrid Cross: look at one trait Objective 2 - Use a Punnett square to predict the results of a monohybrid and a dihybrid cross and state the phenotypic and genotypic ratios of the F2 generation. Monohybrid Cross: look at one trait In pea plants, spherical seeds (S) are dominant to dented seeds (s). In a genetic cross of two plants that are heterozygous for the seed shape trait, what fraction of the offspring should have spherical seeds?

Answer ¾ One fourth of the offspring will be homozygous dominant (SS), one half will be heterozygous (Ss), and one fourth will be homozygous recessive (ss).

Question 2 2. Monohybrid Cross A phenotypic ratio of 3:1 in the offspring of a mating of two organisms heterozygous for a single trait is expected. How does this occur? During what process does this occur?

Answer The alleles segregate during meiosis. Mendel first proposed that alleles segregate from one another during the formation of gametes.

Question 3 Dihybrid Cross: look at two traits True-breeding pea plants with spherical seeds were crossed with true-breeding plants with dented seeds. (Spherical seeds are the dominant characteristic.) Mendel collected the seeds from this cross, grew F1-generation plants, let them self-pollinate to form a second generation, and analyzed the seeds of the resulting F2 generation. The results that he obtained, and that you would predict for this experiment are: (give both the F1 and F2 generations) True Breeding or pure = homozygous Hybrid = heterozygous

All the F1 and 3/4 of the F2 generation seeds were spherical All the F1 and 3/4 of the F2 generation seeds were spherical. All of the F1 plants were true hybrids with a phenotype of Ss. The recessive trait reappears in the F2 generation.

Question 4 A genetic cross between two F1-hybrid pea plants for spherical seeds will yield what percent spherical-seeded plants in the F2 generation? (Recall, spherical-shaped seeds are dominant over dented seeds.)

Answer 75%

Dihybrid cross A pea plant is heterozygous for both seed shape and seed color. S is the allele for the dominant, spherical shape characteristic; s is the allele for the recessive, dented shape characteristic. Y is the allele for the dominant, yellow color characteristic; y is the allele for the recessive, green color characteristic. What will be the distribution of these two alleles in this plant's gametes?

Answer 25% of gametes are SY; 25% of gametes are Sy; 25% of gametes are sY; 25% of gametes are sy. Alleles of different genes are assorted independently of each other during the formation of gametes.

Which of the following genetic crosses would be predicted to give a phenotypic ratio of 9:3:3:1? A. SSYY x ssyy B. SsYY x SSYy C. SsYy x SsYy D. SSyy x ssYY E. ssYY x ssyy

Answer C. SsYy x SsYy

What is the expected phenotypic ratio of the progeny of a SsYy x ssyy test cross?

Answer SsYy, ssYy, Ssyy, ssyy are predicted to occur in a ratio of 1:1:1:1.

In a dihybrid cross, AaBb x AaBb, what fraction of the offspring will be homozygous for both recessive traits?

Answer 1/4 of the gametes of each parent will be ab. The fraction of the offspring homozygous for both recessive traits will be 1/4 times 1/4, or 1/16.

Objective 3 - Explain how the phenotypic expression of the heterozygote is affected by complete dominance, incomplete dominance, and co-dominance. With incomplete dominance, a cross between organisms with two different phenotypes produces offspring with an intermediate phenotype (3rd phenotype) that is a blending of the parental traits. 

A cross between a blue blahblah bird & a white blahblah bird produces offspring that are silver.  The color of blahblah birds is determined by just two alleles. a) What are the genotypes of the parent blahblah birds in the original cross? b) What is/are the genotype(s) of the silver offspring? c) What would be the phenotypic ratios of offspring produced by two silver blahblah birds?

Answer b) What is/are the genotype(s) of the silver offspring? a) What are the genotypes of the parent blahblah birds in the original cross?  Since there are only 2 alleles & three phenotypes (blue, white, & silver), we must be dealing with incomplete dominance.  So the blue parent is homozygous blue (BB) & the white parent is homozygous white (bb). b) What is/are the genotype(s) of the silver offspring?  The silver offspring are hybrids (Bb), one blue allele & one white allele, neither one dominating the other.  Instead, we get a blending of blue & white, i.e. silver. c) What would be the phenotypic ratios of offspring produced by two silver blahblah birds?  silver x silver = Bb x Bb. 25% (1/4) of the offspring are homozygous white (bb), 25% (1/4) are homozygous blue (BB), & 50% (2/4) are hybrid & therefore have the silver phenotype.

With codominance, a cross between organisms with two different phenotypes produces offspring with a third phenotype in which both of the parental traits appear together.  1. Predict the phenotypic ratios of offspring when a homozygous white cow is crossed with a roan bull. (Roan is a result of brown and white hairs being closely located to give the appearance of reddish) 2. What should the genotypes & phenotypes for parent cattle be if a farmer wanted only cattle with brown fur? 3. A cross between a black cat & a tan cat produces a tabby pattern (black & tan fur together). a) What pattern of inheritence does this illustrate? b) What percent of kittens would have tan fur if a tabby cat is crossed with a black cat?

Answer 1. Predict the phenotypic ratios of offspring when a homozygous white cow is crossed with a roan bull. Step #1 --- recognize that "roan" is a codominance trait. Homozygous white = WW, & roan = RW (a hybrid cow). So our cross is WW x RW & the punnett square should look something like what you see here. The results: 2/4 offspring (50%) will be roan (RW), & 50% will be white (WW). 2. What should the genotypes & phenotypes for parent cattle be if a farmer wanted only cattle with brown fur? Well, the only way to have brown fur is to be homozygous brown (RR). In order to get that genotype in all the offspring both parents must be "RR". A parent with one or more "W" alleles will cause the inheritence of roan fur in some offspring. Only RR x RR gives you 100% RR. RR x RW would produce 50% roan, 50% brown, RW x RW produces 25% brown, 50% roan & 25% white, WW x RW would produce 50% roan, 50% white, & WW x RR would produce 100% roan (RW). 3. A cross between a black cat & a tan cat produces a tabby pattern (black & tan fur together). a) What pattern of inheritence does this illustrate? Codominance, two phenotypes together at the same time. b) What percent of kittens would have tan fur if a tabby cat is crossed with a black cat? Tabby cats are the hybrids (because they have both colors) & a black cat must be homozygous black. So the cross for this problem is BB (black) x BT (tabby The results show that 50% of the offspring will be BB (black) & 50% will be tabby (BT). So to answer the question, 0% of the kittens will be tan.

Blood Type Problem In humans the blood groups are produced by various combinations of three alleles IA, IB, and i. Blood type A is caused by either IA IA or IA i; type B by IB IB or IB i; type AB by IA IB; and type O by i i. Suppose a child is of blood type A and the mother is of type 0. What type or types may the father belong to?

Answer Since the mother can only provide alleles for O type blood (i), the father must provide the allele for blood type A (IA). Three genotypes can provide the IA allele: IA IA (blood type A), IA i (blood type A), or IA IB (blood type AB). So the father must be either blood type A or blood type AB. The child (with blood type A) must be heterozygous, IA i (remember the O allele, i, is recessive to both the A and the B alleles).

Blood Type Problem Suppose a father of blood type A and a mother of blood type B have a child of type O. What blood types are possible in their subsequent children?

Answer Construct a Punnett square diagram to determine the possible offspring of these two parents: Based upon these results, we can see that these parents may produce offspring with the following blood type phenotypes: AB, A, B, and O. Remember, because type O blood results from the homozygous recessive genotype (i i ), the only way to produce a type O child is if both parents provide an O allele (i ). Since the father has blood type A, he must be heterozygous (IA i ). Similarly, since the mother has blood type B, she must be heterozygous as well, but with the B and O alleles (IB i ).

Suppose a father and mother claim they have been given the wrong baby at the hospital. Both parents are blood type A. The baby they have been given is blood type O. What evidence bearing on this case does this fact have?

Answer Note that in this problem, all we know is the parental phenotypes, not their genotypes. It is possible that both parents are heterozygous (IA i ). In which case, it would be possible to produce a type O child 25% of the time (see Punnett square diagram below). The baby may indeed belong to these parents. Other genetic tests would be required to know for sure one way or another.

Objective 4 - Explain the inheritance of sex-linked traits and disorders. Hemophilia in humans is due to an X-chromosome mutation. What will be the results of mating between a normal (non-carrier) female and a hemophilac male?

Answer All sons are normal All daughters are carriers

A human female "carrier" who is heterozygous for the recessive, sex-linked trait causing red-green color blindness (or alternatively, hemophilia), marries a normal male. What proportion of their male progeny will have red-green color blindness

Answer Half the sons would be expected to inherit the allele from their mother and be afflicted because they are hemizygous. Half the daughters would be carriers like their mothers.

Women have sex chromosomes of XX, and men have sex chromosomes of XY. Which of a man's grandparents could not be the source of any of the genes on his Y-chromosome? A. Father's Mother. B. Mother's Father. C. Father's Father. D. Mother's Mother, Mother's Father, and Father's Mother. E. Mother's Mother.

Answer D. Mother's Mother, Mother's Father, and Father's Mother. The Y chromosome is inherited solely from father to son in each generation.

Women have sex chromosomes of XX, and men have sex chromosomes of XY. Which of a women's grandparents could not be the source of any of the genes on either of her X-chromosomes? A. Mother's Father. B. Father's Mother. C. Mother's Mother. D. Father's Father. E. Mother's Mother and Mother's Father.

Answer D. Father's Father. The father's father contributes only the Y chromosome to his sons, and subsequently to his grandsons.

The alleles for eye color and for body color are on the X chromosome of Drosophila, but not on the Y. Red eye color (w+) is dominant to white eye color (w), and tan body color (y+) is dominant to yellow body color (y). What is the genotype of a yellow-bodied, red-eyed female who is homozygous for eye color?

Answer

The alleles for eye color and for body color are on the X chromosome of Drosophila, but not on the Y. Red eye color (w+) is dominant to white eye color (w), and tan body color (y+ ) is dominant to yellow body color (y). What is the genotype of a tan-bodied, white-eyed male?

Answer

What offspring would you expect from a cross between the female Drosophila described in problem 1 (red eyes and a yellow body, homozygous recessive for the yellow body color allele and homozygous dominant for the eye color allele) and the male described in problem 2 (hemizygous for both the recessive (white) eye color allele and dominant (tan) body color allele?) A reminder that the alleles for eye color and for body color are on the X chromosome of Drosophila, but not on the Y. Red eye color (w+) is dominant to white eye color (w), and tan body color (y+) is dominant to yellow body color (y).

Answer

Objective 5 - Explain why dominant alleles do not necessarily mean that the allele is more common in a population. The trait that we see mostly when we look around at people is the prevalent trait. The next few slides give examples of some dominant and recessive traits in the human population. As a class determine which of these traits are the most prevalent in the classroom

Thumbs Straight thumbs (dominant trait) can be seen as nearly a straight line and may contain a slight arch when viewed from the side as in the illustrations.  Curved thumbs (recessive trait) can be seen as part of a circle.

Pinky Bent pinky (dominant trait) vs. Straight pinky (recessive trait): Hold your hands together as if you are covering your face. If the tips of the pinkies (or baby fingers) point away from one another, the pinkies are bent (recessive trait).

Forelock A White Forelock (dominant trait) is a patch of white hair, usually located at the hairline just above the forehead. The photo to the left clearly shows an exaggerated white forelock. No White Forelock is the recessive trait.

Earlobes Free earlobes (dominant trait) hang below the point of attachment to the head.  Attached ear lobes (recessive trait) are attached directly to the side of the head.

Dimples Dimples: Dimples (dominant trait) vs. No dimples (recessive trait) Dimples are natural dents in the face to the right or left of the mouth.  If a person has only one dimple, they should be counted as having dimples. Cleft chin is dominant over no cleft.

Widow's Peak (below) is dominant over no widow's peak hairline.

Tongue rolling Tongue-Rolling: Rolling up edges (dominant trait) vs not rolling (recessive)

Analysis Are dominant or recessive trait more prevalent in the classroom? Explain how this can occur