1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.

Slides:



Advertisements
Similar presentations
Chapter 12 Simple Linear Regression
Advertisements

Chapter 14, part D Statistical Significance. IV. Model Assumptions The error term is a normally distributed random variable and The variance of  is constant.
Regresi dan Korelasi Linear Pertemuan 19
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Chapter 12 Simple Linear Regression
Chapter 10 Simple Regression.
Chapter 12b Testing for significance—the t-test Developing confidence intervals for estimates of β 1. Testing for significance—the f-test Using Excel’s.
Chapter 12a Simple Linear Regression
SIMPLE LINEAR REGRESSION
Chapter Topics Types of Regression Models
1 1 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
SIMPLE LINEAR REGRESSION
Korelasi dan Regresi Linear Sederhana Pertemuan 25
1 Pertemuan 13 Regresi Linear dan Korelasi Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide Simple Linear Regression Chapter 14 BA 303 – Spring 2011.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS & Updated by SPIROS VELIANITIS.
SIMPLE LINEAR REGRESSION
1 1 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Introduction to Linear Regression and Correlation Analysis
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Chapter 13: Inference in Regression
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2006 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide Simple Linear Regression Part A n Simple Linear Regression Model n Least Squares Method n Coefficient of Determination n Model Assumptions n.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Econ 3790: Business and Economics Statistics
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2003 Thomson/South-Western Chapter 13 Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple Coefficient of Determination.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved Chapter 13 Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple Coefficient of Determination n Model Assumptions n Testing.
1 1 Slide © 2004 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal
QMS 6351 Statistics and Research Methods Regression Analysis: Testing for Significance Chapter 14 ( ) Chapter 15 (15.5) Prof. Vera Adamchik.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 15 Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple.
INTRODUCTORY LINEAR REGRESSION SIMPLE LINEAR REGRESSION - Curve fitting - Inferences about estimated parameter - Adequacy of the models - Linear.
1 1 Slide Simple Linear Regression Coefficient of Determination Chapter 14 BA 303 – Spring 2011.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
1 Chapter 12 Simple Linear Regression. 2 Chapter Outline  Simple Linear Regression Model  Least Squares Method  Coefficient of Determination  Model.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Chapter 13 Multiple Regression
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Econ 3790: Business and Economic Statistics Instructor: Yogesh Uppal
© 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license.
Chapter 12 Simple Linear Regression n Simple Linear Regression Model n Least Squares Method n Coefficient of Determination n Model Assumptions n Testing.
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
1 1 Slide © 2011 Cengage Learning Assumptions About the Error Term  1. The error  is a random variable with mean of zero. 2. The variance of , denoted.
REGRESSION AND CORRELATION SIMPLE LINEAR REGRESSION 10.2 SCATTER DIAGRAM 10.3 GRAPHICAL METHOD FOR DETERMINING REGRESSION 10.4 LEAST SQUARE METHOD.
INTRODUCTION TO MULTIPLE REGRESSION MULTIPLE REGRESSION MODEL 11.2 MULTIPLE COEFFICIENT OF DETERMINATION 11.3 MODEL ASSUMPTIONS 11.4 TEST OF SIGNIFICANCE.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Lecture 11: Simple Linear Regression
INFERENSIA KORELASI DAN REGRESI LINIER SEDERHANA Pertemuan 12
John Loucks St. Edward’s University . SLIDES . BY.
Statistics for Business and Economics (13e)
Quantitative Methods Simple Regression.
Econ 3790: Business and Economics Statistics
Slides by JOHN LOUCKS St. Edward’s University.
SIMPLE LINEAR REGRESSION
St. Edward’s University
Presentation transcript:

1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. John Loucks St. Edward’s University SLIDES. BY

2 2 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Chapter 14, Part A Simple Linear Regression n Simple Linear Regression Model n Least Squares Method n Coefficient of Determination n Model Assumptions n Testing for Significance

3 3 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Simple Linear Regression Regression analysis can be used to develop an Regression analysis can be used to develop an equation showing how the variables are related. equation showing how the variables are related. Managerial decisions often are based on the Managerial decisions often are based on the relationship between two or more variables. relationship between two or more variables. The variables being used to predict the value of the The variables being used to predict the value of the dependent variable are called the independent dependent variable are called the independent variables and are denoted by x. variables and are denoted by x. The variable being predicted is called the dependent The variable being predicted is called the dependent variable and is denoted by y. variable and is denoted by y.

4 4 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Simple Linear Regression The relationship between the two variables is The relationship between the two variables is approximated by a straight line. approximated by a straight line. Simple linear regression involves one independent Simple linear regression involves one independent variable and one dependent variable. variable and one dependent variable. Regression analysis involving two or more Regression analysis involving two or more independent variables is called multiple regression. independent variables is called multiple regression.

5 5 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Simple Linear Regression Model y =  0 +  1 x +  where:  0 and  1 are called parameters of the model,  is a random variable called the error term.  is a random variable called the error term. The simple linear regression model is: The simple linear regression model is: The equation that describes how y is related to x and The equation that describes how y is related to x and an error term is called the regression model. an error term is called the regression model.

6 6 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Simple Linear Regression Equation n The simple linear regression equation is: E ( y ) is the expected value of y for a given x value. E ( y ) is the expected value of y for a given x value.  1 is the slope of the regression line.  1 is the slope of the regression line.  0 is the y intercept of the regression line.  0 is the y intercept of the regression line. Graph of the regression equation is a straight line. Graph of the regression equation is a straight line. E ( y ) =  0 +  1 x

7 7 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Simple Linear Regression Equation n Positive Linear Relationship E(y)E(y)E(y)E(y) x Slope  1 is positive Regression line Intercept  0

8 8 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Simple Linear Regression Equation n Negative Linear Relationship E(y)E(y)E(y)E(y)x Slope  1 is negative Regression line Intercept  0

9 9 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Simple Linear Regression Equation n No Relationship E(y)E(y)E(y)E(y)x Slope  1 is 0 Regression line Intercept  0

10 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Estimated Simple Linear Regression Equation n The estimated simple linear regression equation is the estimated value of y for a given x value. is the estimated value of y for a given x value. b 1 is the slope of the line. b 1 is the slope of the line. b 0 is the y intercept of the line. b 0 is the y intercept of the line. The graph is called the estimated regression line. The graph is called the estimated regression line.

11 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Estimation Process Regression Model y =  0 +  1 x +  Regression Equation E ( y ) =  0 +  1 x Unknown Parameters  0,  1 Regression Model y =  0 +  1 x +  Regression Equation E ( y ) =  0 +  1 x Unknown Parameters  0,  1 Sample Data: x y x 1 y x n y n Sample Data: x y x 1 y x n y n b 0 and b 1 provide estimates of  0 and  1 b 0 and b 1 provide estimates of  0 and  1 Estimated Regression Equation Sample Statistics b 0, b 1 Estimated Regression Equation Sample Statistics b 0, b 1

12 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Least Squares Method n Least Squares Criterion where: y i = observed value of the dependent variable for the i th observation for the i th observation^ y i = estimated value of the dependent variable for the i th observation for the i th observation

13 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. n Slope for the Estimated Regression Equation Least Squares Method where: x i = value of independent variable for i th observation observation_ y = mean value for dependent variable _ x = mean value for independent variable y i = value of dependent variable for i th observation observation

14 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. n y -Intercept for the Estimated Regression Equation Least Squares Method

15 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Reed Auto periodically has a special week-long sale. As part of the advertising campaign Reed runs one or more television commercials during the weekend preceding the sale. Data from a sample of 5 previous sales are shown on the next slide. Simple Linear Regression n Example: Reed Auto Sales

16 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Simple Linear Regression n Example: Reed Auto Sales Number of TV Ads ( x ) TV Ads ( x ) Number of Cars Sold ( y )  x = 10  y = 100

17 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Estimated Regression Equation n Slope for the Estimated Regression Equation n y -Intercept for the Estimated Regression Equation n Estimated Regression Equation

18 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Coefficient of Determination n Relationship Among SST, SSR, SSE where: SST = total sum of squares SST = total sum of squares SSR = sum of squares due to regression SSR = sum of squares due to regression SSE = sum of squares due to error SSE = sum of squares due to error SST = SSR + SSE

19 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. n The coefficient of determination is: Coefficient of Determination where: SSR = sum of squares due to regression SST = total sum of squares r 2 = SSR/SST

20 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Coefficient of Determination r 2 = SSR/SST = 100/114 =.8772 The regression relationship is very strong; 87.72% The regression relationship is very strong; 87.72% of the variability in the number of cars sold can be explained by the linear relationship between the number of TV ads and the number of cars sold.

21 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Sample Correlation Coefficient where: b 1 = the slope of the estimated regression b 1 = the slope of the estimated regression equation equation

22 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. The sign of b 1 in the equation is “+”. Sample Correlation Coefficient r xy =

23 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Assumptions About the Error Term  1. The error  is a random variable with mean of zero. 2. The variance of , denoted by  2, is the same for all values of the independent variable. all values of the independent variable. 2. The variance of , denoted by  2, is the same for all values of the independent variable. all values of the independent variable. 3. The values of  are independent. 4. The error  is a normally distributed random variable. variable. 4. The error  is a normally distributed random variable. variable.

24 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Testing for Significance To test for a significant regression relationship, we To test for a significant regression relationship, we must conduct a hypothesis test to determine whether must conduct a hypothesis test to determine whether the value of  1 is zero. the value of  1 is zero. To test for a significant regression relationship, we To test for a significant regression relationship, we must conduct a hypothesis test to determine whether must conduct a hypothesis test to determine whether the value of  1 is zero. the value of  1 is zero. Two tests are commonly used: Two tests are commonly used: t Test and F Test Both the t test and F test require an estimate of  2, Both the t test and F test require an estimate of  2, the variance of  in the regression model. the variance of  in the regression model. Both the t test and F test require an estimate of  2, Both the t test and F test require an estimate of  2, the variance of  in the regression model. the variance of  in the regression model.

25 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. An Estimate of  2 An Estimate of  2 Testing for Significance where: s 2 = MSE = SSE/( n  2) The mean square error (MSE) provides the estimate of  2, and the notation s 2 is also used.

26 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Testing for Significance An Estimate of  An Estimate of  To estimate  we take the square root of  2. To estimate  we take the square root of  2. The resulting s is called the standard error of The resulting s is called the standard error of the estimate. the estimate.

27 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. n Hypotheses n Test Statistic Testing for Significance: t Test where

28 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. n Rejection Rule Testing for Significance: t Test where: t  is based on a t distribution with n - 2 degrees of freedom Reject H 0 if p -value <  or t t 

29 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. 1. Determine the hypotheses. 2. Specify the level of significance. 3. Select the test statistic.  = State the rejection rule. Reject H 0 if p -value <.05 or | t| > (with 3 degrees of freedom) Testing for Significance: t Test

30 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Testing for Significance: t Test 5. Compute the value of the test statistic. 6. Determine whether to reject H 0. t = provides an area of.01 in the upper tail. Hence, the p -value is less than.02. (Also, t = 4.63 > ) We can reject H 0.

31 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Confidence Interval for  1 H 0 is rejected if the hypothesized value of  1 is not H 0 is rejected if the hypothesized value of  1 is not included in the confidence interval for  1. included in the confidence interval for  1. We can use a 95% confidence interval for  1 to test We can use a 95% confidence interval for  1 to test the hypotheses just used in the t test. the hypotheses just used in the t test.

32 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. The form of a confidence interval for  1 is: The form of a confidence interval for  1 is: Confidence Interval for  1 where is the t value providing an area of  /2 in the upper tail of a t distribution with n - 2 degrees of freedom b 1 is the pointestimator pointestimator is the margin of error is the margin of error

33 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Confidence Interval for  1 Reject H 0 if 0 is not included in the confidence interval for  1. 0 is not included in the confidence interval. Reject H 0 = 5 +/ (1.08) = 5 +/ or 1.56 to 8.44 n Rejection Rule 95% Confidence Interval for  1 95% Confidence Interval for  1 n Conclusion

34 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. n Hypotheses n Test Statistic Testing for Significance: F Test F = MSR/MSE

35 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. n Rejection Rule Testing for Significance: F Test where: F  is based on an F distribution with 1 degree of freedom in the numerator and n - 2 degrees of freedom in the denominator Reject H 0 if p -value <  p -value <  or F > F 

36 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. 1. Determine the hypotheses. 2. Specify the level of significance. 3. Select the test statistic.  = State the rejection rule. Reject H 0 if p -value <.05 or F > (with 1 d.f. in numerator and 3 d.f. in denominator) 3 d.f. in denominator) Testing for Significance: F Test F = MSR/MSE

37 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Testing for Significance: F Test 5. Compute the value of the test statistic. 6. Determine whether to reject H 0. F = provides an area of.025 in the upper tail. Thus, the p -value corresponding to F = is less than.025. Hence, we reject H 0. F = provides an area of.025 in the upper tail. Thus, the p -value corresponding to F = is less than.025. Hence, we reject H 0. F = MSR/MSE = 100/4.667 = The statistical evidence is sufficient to conclude The statistical evidence is sufficient to conclude that we have a significant relationship between the number of TV ads aired and the number of cars sold.

38 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. Some Cautions about the Interpretation of Significance Tests Just because we are able to reject H 0 :  1 = 0 and Just because we are able to reject H 0 :  1 = 0 and demonstrate statistical significance does not enable demonstrate statistical significance does not enable us to conclude that there is a linear relationship between x and y. Rejecting H 0 :  1 = 0 and concluding that the Rejecting H 0 :  1 = 0 and concluding that the relationship between x and y is significant does not enable us to conclude that a cause-and-effect relationship is present between x and y.

39 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. or duplicated, or posted to a publicly accessible website, in whole or in part. End of Chapter 14, Part A