Tissue Radiation Biology

Slides:



Advertisements
Similar presentations
B-2.4 Explain the process of cell differentiation as the basis for the hierarchical organization of organisms (including cells, tissues, organs, and.
Advertisements

Modifiers of Cell Survival: Repair
Cell Cycle and Cancer Study Guide review.
The Basics Of Cancer* By Aoife Rafferty* Catherine Quaile* Kayleigh Powderly*
Adult Stem Cells Stem Cells, Bone Marrow and Blood
Types of cellular damage
Ahmed Group Lecture 6 Cell and Tissue Survival Assays Lecture 6.
A cell that has the capabilities for unlimited self-renewal Usually slow cycling Able to give rise to at least one differentiated, somatic, cell type.
Chapter 5 Cell Growth and Division Mr. Shilala DAHS
Modifiers of Cell Survival: Oxygen Effect
ADULT STEM CELL DR ANDUJAR LPGN RESEARCH SCIENTIST.
Stem Cells Cloning Cancer Stem Cell Research What Are Stem Cells? Stem Cells are unspecialized cells, this means that they do not have a specific function.
Radiation and Its Uses Pg Effects of Radiation Radioactive elements are potentially hazardous, but the effects are quite subtle The effects.
Stem Cells. Cell Differentiation and Stem Cells Major Topics for Discussion: 1) What are Stem Cells? 2) What are the major types of Stem Cells and where.
Cellular Senescence: A Link between Tumor Suppression and Organismal Aging.
National Committee for the Certification of Radiation Protection Officer BIOLOGICAL EFFECTS OF IONIZING RADIATION.
Sexual v. Asexual Reproduction. Binary Fission Chromosome Structure Eukaryotic chromosomes contain DNA and protein tightly packed together to from chromatin.
Picture of Adult Stem Cell. Introduction Diabetes is an illness that affects the metabolism of insulin. About 16 million people are affected by this disease.
Biotechnology Research Project by Anna Dong, Soojin Jeong, Reina Ooka -Stem Cells-
Health Biotechnology Stem Cell Therapeutics; Tissue Engineering LECTURE 21: Biotechnology; 3 Credit hours Atta-ur-Rahman School of Applied Biosciences.
10.3 Regulating the Cell Cycle 10.4 Cell Differentiation
Key concept: Cells work together to carry out complex functions.
Radiation and Its Uses Pg Effects of Radiation Radioactive elements are potentially hazardous, but the effects are quite subtle The effects.
CELL DIFFERENTIATION 4-4 Notes. Differentiation Cells not only divide by mitosis to make 2 daughter cells, but they also differentiate. Differentiation.
RADIOBIOLOGY: PART TWO. CELLULAR EFFECTS OF IRRADIATION Instant death Reproductive death Apoptosis, programmed cell death(interphase death) Mitotic or.
Using Stem Cells to Treat Disease The first step: establish stem cell lines (large groups of the same cells) Next: turn on specific genes so that the stem.
6/1/2016 CHAPTER 8 MITOSIS. 6/1/2016 MITOSIS Cell division is essential to: Cell division is essential to: Replace dead cells (50 million cells die per.
Stem Cells
STEM CELLS – ETHICAL ISSUES National 4 & 5 Biology – multicellular organisms.
Cell Division and Reproducing New Organisms Science 9.
Cancer: Uncontrolled Cell Growth
Stage 1 Biology Semester Biotechnology
Section 5.4: Asexual Reproduction Biology. Types of Reproduction Sexual Reproduction Joining of gametes (sperm and eggs), one from each parent Genetically.
Stem Cells Science and Society.
Stem Cells? Two main characteristics - unspecialized cells that renew themselves for long periods of time - they can be induced to become cells with special.
Stem Cells and the Maintenance of Adult Tissues
10.3 Regulating the Cell Cycle
Welcome to Class 12-7 & Turn in 4 Biomolecule paper 2. Work on STAAR Review Session 2 # Regulating Cell Cycle Note 4. Research diseases.
5.5 Multicellular Life TEKS 5B, 5C, 10C The student is expected to: 5B examine specialized cells, including roots, stems, and leaves of plants; and animal.
 What is cancer?  What could happen in mitosis or meiosis that could cause cancer?  What environmental factors could cause cancer?
Cancer and the Cell Cycle. Controls on Cell Division How do cells know when to divide? How do cells know when to divide? How do cells regulate the cell.
STEM CELLS A cell that has the ability to continuously divide and differentiate (develop) into various other kind(s) of cells/tissues. Stem Cell Characteristics:
NOTES: Regulating the Cell Cycle / Cell Differentiation
Cancer and the Cell Cycle Warm Up: what does cell cycle regulation have to do with cancer?
Lecture # 29 Tissue Repair, Regeneration, Healing & Fibrosis – 1 Dr. Iram Sohail Assistant Professor Pathology College of Medicine Majmaah University.
Please get out a sheet of paper for notes.. Differentiation, Stem Cells, and Multicellular Organization.
Specialized Plant and Animal cells 1
Cell Differentiation and Regeneration The number of cells from any organism ranges from one to trillions. However, even the most complex organisms have.
University of Rajshahi
Stem Cells.
Cell Differentiation.
TYPES OF STEM CELLS.
Bio Explain how instructions in DNA lead to cell differentiation and result in cells specialized to perform specific functions in multicellular organisms.
Emergent Properties of Cells
The Law of Bergonie & Tribondeau
RADIOBIOLOGY: PART TWO
Stem Cells PUPIL NOTES.
Cell Cycle + Mitosis.
RTMR 284 Chapter 30 : Fundamental Principles of Radiobiology
How do cells know when to divide?
Stem Cells and Meristems
STEM CELLS Mesenchymal precursor cells
Emergent Properties of Cells
Adaptive Response to Low Dose Radiation
Stem Cells and Cellular Differentiation
Cell Biology and Radiation Genetics
Notes: Regulating the Cell Cycle
At the moment of conception a potential human being is just one cell
Focus 7 Feb 20, 21 What is the cell cycle and what happens? (full page) 2. What happens during mitosis and cytokinesis?
Stem cell Basics.
Presentation transcript:

Tissue Radiation Biology

Response to irradiation at the tissue level; Tied to cellular division kinetics In general cells have the same sensitivity to ionizing radiation as far as nuclear injury is concerned. The DNA in all mammalian cells has about the same sensitivity to radiation injury.,

Response to irradiation at the tissue level; Difference in response become apparent at the tissue (organ) level. These differences in radiation sensitivity are due to the rate of replication inherent in the critical cells in that

"Law" of Bergonie' and Tribondeau Radiation has a more rapid (is more effective) effective against cell that are actively dividing, are undifferentiated and have a large dividing future.

Cell differentiation Undifferentiated cells are precursor or stem cells and have less specialized functions. Their major role is to reproduce to replace themselves and to provide cells which mature into more differentiated cells.

Modified by Ancel and Vitemberger The appearance of radiation damage is dependent on two factors: 1. The biologic stress on the cell and 2. the conditions to which the cell is exposed pre and post irradiation The most important biologic stress is division therefore rapidly dividing cells express damage earlier and slowly dividing cells later.

Cell differentiation The more specialized a cells function is, the more differentiated it is. (examples are the major organ cells, muscle and neurons Highly differentiated cell usually have less reproductive activity than undifferentiated cells. (examples of undifferentiated cells are bone marrow cells, intestinal crypt cells and basal cells of the skin.

Cell differentiation Undifferentiated cells are precursor or stem cells and have less specialized functions. Their major role is to reproduce to replace themselves and to provide cells which mature into more differentiated cells. Undifferentiated cells generally are actively dividing and have a long dividing future.

Rubin and Casarett classification of cellular populations based on reproductive kinetics: These classifications cells is an attempt to explain the difference in observed cellular and tissue radiosensitivity based on the reproductive and functional characteristics of various cell lines.

Vegetative Intermitotic Cells.(VIM) Undifferentiated rapidly dividing cells which generally have a quite short life cycle. Examples are erythroblasts, intestinal crypt cells and basal cells of the skin. Essentially continuously repopulated throughout life.

Differentiating Intermitotic Cells (DIM) Actively mitotic cells with some level of differentiation. Spermatogonia are a prime example as well as midlevel cells in differentiating cell lines. Have substantial reproductive capability but will eventually stop dividing or mature into a differentiate cell line

Multipotential Connective Tissue Cells Cells which divide at irregular intervals often in response to a need. Relatively long cell life cycle. Major examples are fibroblasts although recently more examples of such cells have been identified in a number of tissues

Reverting Postmitotic Cells (RPM) does not normally undergo division but can do so if called upon by the body to replace a lost cell population. These are generally long lived cells. Mature liver cells, pulmonary cells and kidney cells make are examples of this type of cell.

Fixed Postmitotic Cells. (FPM) These cells do not and cannot divide. They are highly differentiated and are highly specialized in there morphology and function. May be very long lived or relatively short lived but replaced by differentiating cells below them in the cell maturation lines. Examples are: Neurons, muscle cells and RBCs

Perceived Radiation Sensitivity VIM cells are the most sensitive cells to radiation and FPM cells are most resistant. The others are of intermediate sensitive in the order presented. However, this perception is a product of the longer cell cycle time in more highly differentiated cell lines

Michalowski Classification A more modern type of classification which essentially says the same thing in another way.

Michalowski Classification Stem cells –continuously divide and reproduce to give rise to both new stem cells and cells that eventually give rise to mature functional cells. Maturing cells arising from stem cells and through progressive division eventually differentiate into an end-stage mature functional cell. Mature adult functional cells that do not divide

(H-type) There are many cell types that progress from the stem cell through the mature cell with nonreversible steps along the way. These cell lines are said to be hierarchical (H-type) populations. They include bone marrow, intestinal epithelium, epidermis and many others.

F-type populations There are other cell lines in which the adult cells can under certain circumstance be induced to undergo division and reproduce another adult cell. These cell are said to be flexible tissue (F-type populations). Examples include; liver parenchymal cells, thyroid cells and pneumocytes as well as others.

Michalowski Classification These two types represent extremes and there are many tissues which exhibit characteristics of both types where mature cells are able to divide a limited number of times. The rapidity of response to and hence the sensitivity to radiation at the tissue level is dependent on the length of the life cycle and the reproductive potential of the critical cell line within that tissue.

“Critical Cells" All tissues contain multiple cell types contained in either the stromal compartment or the parenchymal compartment. A cell in either compartment may be the critical cell.

“Critical Cells" the endothelial cells lining the blood vessels were thought for many years to be the critical cells in tissues however "critical cells" have been identified in many tissues.

The time required for the tissue to respond to radiation injury can be predicted on the basis of the cell cycle kinetics of these critical cells.

Biologic Factors moderating Cell injury by irradiation. Cell Cycle. Intracellular repair Hypoxia

Cell Cycle. The point that a cell is in the cell cycle has a marked influence on its response and survival of irradiation. G1 & G0 are relatively insensitive to radiation injury. S phase is generally considered to be the most resistant to radiation injury.

Cycle Phase Influence on Sensitivity

Intracellular repair The shoulder on the cell survival curve indicates that there is some degree of repair by cells of radiation injury. Amount of repair differs between cell lines However the rate of repair is the same

Intracellular Repair

Intracellular repair

Intracellular repair Studies have shown that although repair can be an ongoing process, the vast majority of the repair is finished by 6 hours post irradiation. Once repair is complete the remaining cell population will respond to subsequent dose of radiation as though the original irradiation had not occurred

Hypoxia Oxygen is a potent preventer of repair Hypoxia markedly improves the ability of the cells to repair radiation injury However it is quite rare for a normal somatic cell to be hypoxic.

Measurement or radiation injury at the tissue level Assay systems are needed to construct survival and injury curves for irradiation at the tissue level. Such assays must be quantifiable The effect measured must increase with dose

Types of Assays Clonogenic (related to reproductive potential of stem cells in the tissue target cell population Specific tissue functional capability Lethality - death of the organism from radiation of that tissue

Clonogenic assays May be performed in vivo or in vitro In an in vitro assay cells are harvested from tissue irradiated in living tissue and the cells are grown out in cell culture and the number of colonies growing out is compared to that for a control In vivo assays are performed by evaluation of cellular reproductive activity in the living animal

In Vitro Assays Cells harvested from culture and plated out – many, many flasks or dishes Dishes are irradiated at different levels The number of colonies are counted after a specific time. # of colonies compared to control sample Survival curves generated

In vivo Assays Two types In Situ Assays Transplantation Assays

In Situ Assays The tissue or organ is irradiated in the whole animal. At a given time after irradiation the organism (animal or plant) is sacrificed and the organ of interest is evaluated for cell survival of the cell of interest. Classic example is the intestinal crypt cell studies

In Situ Assays Another example is irradiation of testes and then assaying the testicle for surviving spermatogonia in the tubules of the testicle.

In Situ Assays Classically these assays have been used to evaluate the radiation effects in acutely responding (rapidly dividing) cell lines such as the intestinal villi, the testes and the skin. Recently these types of assays have been extended to evaluation (slowly dividing) cell lines.

In situ Assays These assays have shown that the Do for slowly dividing cells in this assay is about 1.5 Gy or about the same as for the rapidly responding tissues. The difference in time required for the cell killing to occur is a manifestation of the slow turnover rate of the cells.

In Situ Assays Tissue is irradiated in vivo and returned to subject. After a period of time the number of viable cell groups in irradiated area is measured Generally done in mice as large numbers are required. Intestinal and gonadal epithelium are the classic tissues studied.

In Situ Assays Studies of RPM and FPM tissues and cell lines requires much longer experiment May require use of larger more expensive and long lived animals These studies are very expensive to do

Transplantation Assays Often used to study tumor sensitivity Usually done in immune compromised animals. Done to mimic metastatic disease or to remove immune system effects in live animal

Transplantation Assays Tumor or test tissue is irradiated while still in donor animal. Irradiated tissue is then removed and cells suspended in solution. Cells then injected into recipient animal After a period of growth, the animals are sacrificed and the number of tissue colonies or size of colony is measured.

Functional Assays Measure organ functional capacity Most organs have clinical functional reserve Tests measure complete functional capacity Done in a live animal with “in situ” organs Do not require sacrifice of the animal Multiple dose levels can be studied Measure effect at sub clinical levels. Heart, lungs, liver, kidneys applicable

Functional Assays Measure effects of regional irradiation Very important in radiation therapy Helps predict effects of irradiation plan Also used to study effects of ingested radionuclides either medical or accidental Useful for studies on effect modifiers such as chemotherapy.

Lethality Assays Measures clinical effects Measures doses required to cause death. Whole body irradiation Regional body irradiation (brain, heart, liver, etc. Generally expressed in terms of % death in a given time. i.e. LD30/90 30% of subjects die by 90 days post irradiation