Radioactive Ion Beams: where are we now experimentally? M. Huyse K.U. Leuven Moriond, March 2003 Opening page.

Slides:



Advertisements
Similar presentations
Investigation of short-lived nuclei using RIBs
Advertisements

SYNTHESIS OF SUPER HEAVY ELEMENTS
LoI Relativistic Coulomb M1 excitation of neutron-rich 85 Br N. Pietralla G. Rainovski J. Gerl D. Jenkins.
Coulomb excitation with radioactive ion beams
MINIBALL g-ray Spectroscopy far from Stability
GEANT4 Simulations of TIGRESS
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
What have we learned last time? Q value Binding energy Semiempirical binding energy formula Stability.
Estimation of production rates and secondary beam intensities Martin Veselský, Janka Strišovská, Jozef Klimo Institute of Physics, Slovak Academy of Sciences,
Congresso del Dipartimento di Fisica Highlights in Physics –14 October 2005, Dipartimento di Fisica, Università di Milano Study of exotic nuclei.
Relativistic Coulomb excitation of nuclei near 100 Sn C.Fahlander, J. Eckman, M. Mineva, D. Rudolph, Dept. Phys., Lund University, Sweden M.G., A.Banu,
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Coulomb excitation and  -decay studies at (REX-)ISOLDE around Z = 28 J. Van de Walle – KVI - Groningen 1. ISOLDE and REX-ISOLDE ; 2. Results around Z=28.
Limits of Stability Neutron Drip Line? Proton Drip Line? Known Nuclei Heavy Elements? Fission Limit?
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
The CARIBU facility Guy Savard Argonne National Laboratory & University of Chicago ATLAS Users Meeting May
XXXVIII th Rencontres de Moriond MORIOND WORKSHOP ON Radioactive beams for nuclear physics and neutrino physics Acceleration of RIB using cyclotrons Guido.
Overview of Recent Highlights from ISOL Facilities Juha Äystö Department of Physics, University of Jyväskylä & Helsinki Institute of Physics Finland Introduction.
Nuclear physics input to astrophysics: e.g.  Nuclear structure: Masses, decay half lives, level properties, GT strengths, shell closures etc.  Reaction.
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
Noyaux CERN- ISOLDE Yorick Blumenfeld.
H. Ravn CERN High-power Targetry for Future Accelerators 7/9/ H. L. Ravn/CERN, EP High power targets for EURISOL and Beta -beams.
RIA Summer School 2006 Exotic Beam Production and Facilities II Brad Sherrill, Michigan State University Lecture I The Rare Isotope Accelerator Concept.
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
Decay Spectroscopy Working Group Nuclear Structure Theory Morten Hjorth-Jensen – Shell Structure and Interactions Ivan Borzov – Theory of  Decay Applications.
Experimental achievements and outlook (only a few examples to illustrate the achievements and to paint the “road map” for the future) Extreme proton-to-neutron.
CERN NuPAC meeting Dec 2005 The future of ISOLDE: accelerated radioactive beams Peter Butler 1.HIE-ISOLDE 2.EURISOL.
Radioactive ion beam facilities How does they work ? 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
Mass measurements using low energy ion beams -1- C. Thibault 31 mars 2004 Motivations to measure masses Present status Experimental methods for direct.
First application of ranging-out method and hybrid 3Hen counter at ISAC-1: measurement of absolute beta-delayed neutron rates (I βn ) for Ga and Ge isotopes.
Nuclear structure around 100 Sn Darek Seweryniak, ANL.
abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1 ]  70% transmission SIS – FRS  ε trans transmission.
1 Reaction Mechanisms with low energy RIBs: limits and perspectives Alessia Di Pietro INFN-Laboratori Nazionali del Sud.
Yu. Oganessian FLNR (JINR) PAC–meeting, June 22, 2009, Dubna Experimental activities and main results of the researches at FLNR (JINR) Theme: Synthesis.
The REXTRAP Penning Trap Pierre Delahaye, CERN/ISOLDE Friedhelm Ames, Pierre Delahaye, Fredrik Wenander and the REXISOLDE collaboration TAS workshop, LPC.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
European Isotope Separation On-Line Radioactive Nuclear Beam Facility A preliminary design study of the next- generation European ISOL RNB facility GANIL,
Accelerator Physics, JU, First Semester, (Saed Dababneh). 1 Electron pick-up. ~1/E What about fission fragments????? Bragg curve stochastic energy.
Status Report of the LISOL Laser Ion Source Yu.Kudryavtsev, T.Cocolios, M.Facina, J.Gentens, M.Huyse, O.Ivanov, D.Pauwels, M.Sawicka, P.Van den Bergh,
Coulomb excitation of neutron-rich 32,33 Mg nuclei with MINIBALL at HIE-ISOLDE P. Reiter 1, B. Siebeck 1, M. Seidlitz 1, A. Blazhev 1, K. Geibel 1, N.
 2-proton emission  experimental set-up  decay results  2p emission from 45 Fe  perspectives Jérôme Giovinazzo – CEN Bordeaux-Gradignan – France PROCON’03.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
Rare Isotope Spectroscopic INvestigation at GSI. abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1.
UK Research in Nuclear Physics P J Nolan University of Liverpool.
FAIR (Facility for Antiproton and Ion Research) (Darmstadt, Germany) low-energy cave MeV/u fragmentation/fission ~1GeV/u fragment separator 350m.
1 CNS summer school 2002 The RI-Beam Factory and Recent Development in Superheavy Elements Search at RIKEN ◆ Brief introduction to the RI Beam Factory.
B elgian R esearch I nitiative on e X otic nuclei ISOLDE INTC-P-316 Spokespersons: G. Neyens, M.M. Rajabali, K.U. Leuven Local contact: K.T. Flanagan,
Title page J Van de Walle 1, I. Stefanescu 1, P Mayet 1, O Ivanov 1, F Aksouh 1, D Smirnov 1, JC Thomas 1, R Raabe 1, M Huyse 1, P Van Duppen 1 1 IKS KULeuven.
Trends in Heavy Ion Physics Research, Dubna, May Present and future physics possibilities at ISOLDE Karsten Riisager PH Department, CERN
1 Cost Room Availability Passive Shielding Detector spheres for accelerators Radiation Detection and Measurement, JU, First Semester, (Saed Dababneh).
SECONDARY-BEAM PRODUCTION: PROTONS VERSUS HEAVY IONS A. Kelić, S. Lukić, M. V. Ricciardi, K.-H. Schmidt GSI, Darmstadt, Germany  Present knowledge on.
Observation of new neutron-deficient multinucleon transfer reactions
G. Bollen, INTC-NUPAC Meeting, CERN, Geneva, October 2005 Overview and Motivation Mass Measurements at ISOLDE … … and elsewhere Conclusions Mass Measurements.
Coulomb-excitation of the exotic nuclei 94 Kr and 96 Kr M. Albers 1, N. Warr 1, D. Mücher 1, A. Blazhev 1, J. Jolie 1, B. Bastin 2, C. Bernards 1, J. Butterworth.
Summary: Physics Opportunities for ISOLDE and n_TOF Peter Butler.
How can one produce rare isotopes? Question Slid 3 Hendrik Schatz NNPSS 2012, Slide 3 Rare Isotope Production Techniques: Uniqueness of FRIB Target spallation.
Georgi Georgiev CSNSM, Orsay, France Nuclear structure studies at the r-process path Coulomb excitation of odd-A neutron-rich Rb isotopes at REX-ISOLDE.
Comprehensive investigation of the decay losses in the ISOL extraction method KP2 Seminar, Strahinja Lukić.
Georgi Georgiev CSNSM, Orsay, France
A. Casanovas (UPC), C. Domingo-Pardo (IFIC), C. Guerrero (U
SMI-06 Workshop, Groningen,
A “standard” ISOLDE target: ThO2-184, n-rich Cu
Irina Stefanescu1, O. Ivanov1, J. Van de Walle1, N. Patronis1, D
EMIS, 2002, Victoria, Canada Mats Lindroos for PSMB Mats Lindroos.
Rare Isotope Spectroscopic INvestigation at GSI
Recent Highlights and Future Plans at VAMOS
Rare Isotope Spectroscopic INvestigation at GSI
Rare Isotope Spectroscopic INvestigation at GSI
Presentation transcript:

Radioactive Ion Beams: where are we now experimentally? M. Huyse K.U. Leuven Moriond, March 2003 Opening page

The exploration of the chart of nuclei 284 isotopes with T 1/2 > 10 9 year Our beams till 1989 !

The exploration of the chart of nuclei <

The exploration of the chart of nuclei < Reactors: n on U

The exploration of the chart of nuclei < First Isotope Separator On-Line (ISOL) experiment Niels Bohr Institute 1951 fast n on U: Kr and Rb isotopes

The exploration of the chart of nuclei < Selective detection method:  decay

The exploration of the chart of nuclei < Light-ion induced spallation Heavy-ion induced fusion

The exploration of the chart of nuclei < Projectile and target fragmentation + In-flight separation

The present chart of nuclei stable  + decay  - decay  decay p decay spontaneous fission Around 3000 of the expected 6000 nuclei have been observed -Explaining complex nuclei from basic constituents -The size of the nucleus: halos and skins -Isospin dependence of the nuclear force -Measuring and predicting the limits of nuclear existence -Doubly-magic nuclei and shell structure far from stability -The end of Mendeleev’s table: superheavies -Understanding the origin of elements -Testing the Standard Model -Applications in materials and life sciences

driver accelerator or reactor thin targethigh-temperature thick target fragment separator experiment detectors spectrometers... ion source mass separator storage ring In Flight (IF)Isotope Separator On Line (ISOL) heavy ions -fusion -fragmentation light and heavy ions, n, e -spallation -fission -fusion -fragmentation post accelerator GeV eventually slowed down  s meV to 100 MeV/u ms to several s good beam quality gas cell ~ ms IF versus ISOL

First generation Radioactive Beam Projects in Europe CRC, Louvain-la-Neuve, Belgium delivering ISOL beams since 1989 SPIRAL, Caen, France delivering IF beams since 1984 delivering ISOL beams since 2001 REX-ISOLDE, Geneva, Switzerland delivering ISOL beams since 2001 GSI, Darmstadt, Germany delivering IF beams since 1990 MAFF, Munich, Germany under construction SPES, Legnaro, Italy project

First generation Radioactive Beam Projects LocationStartDriverPost- accelerator Upgrade planned CRC, Louvain-la- Neuve, Belgium 1989cyclotron p, 30 MeV, 200  A cyclotrons K = 44 and 110 SPIRAL, GANIL, Caen, France cyclotrons heavy ions up to 95 MeV/u 6 kW cyclotron K = MeV/u new driver REX-ISOLDE, CERN, Geneva, Switzerland 2001PS booster p, 1.4 GeV, 2  A linac MeV/u energy upgrade 4.3 MeV/u HRIBF, Oak Ridge, USA 1998cyclotron p, d, , MeV  A 25 MV tandem ISAC, TRIUMF, Vancoucer, Canada 2000synchrotron p, 500 MeV, 100  A linac 1.5 MeV/u energy upgrade 6.5 MeV/u

CYCLONE 110 Louvain-la-Neuve: focus on nuclear astrophysics 30 MeV p + 13 C => 13 N + n 13 N + p => 14 O +  Hot CNO cycle

Louvain-la-Neuve: nuclear physics c.m.c.m. d  /d  (mb/sr) 4 He( 6 He, 6 He) 4 He E c.m. = 11.6 MeV 6 He U 4 He U 6 Li U 4 He U 6 He U fusion-fission 6 He + 4 He elastic scattering J. L. Sida et al. PRL84 (2000) 2342R. Raabe et al. PLB458 (1999) 1

E (keV) Neutron pick-up of 30 Mg (T 1/2 =0.3 s) 30 Mg + 2 H  31 Mg + 1 H atoms/sec 2.23 MeV/u 31 Mg 16 N (from beam contamination) REX-ISOLDE - CERN + MINIBALL array 76 Kr Pb atoms/sec MeV/u Coulomb excitation of 76 Kr (T 1/2 =14.6 h) SPIRAL - GANIL + EXOGAM array First results from SPIRAL and REX-ISOLDE

Mass measurements rp-process Super-allowed Fermi  -decay 74 Rb (T 1/2 =65 ms)  m = 4.5 keV (  m/m = )

Rare Isotope Accelerator: RIA RI-Beam factory: RIKEN GSI European Separator On-Line Radioactive Nuclear Beam Facility Experimental aim of the second generation facilities  figure of merit for the study of exotic nuclei x > 1000 Technological challenge  increase the global selectivity and sensitivity  increase the secondary beam intensity The new generation of Radioactive Beam Facilities

RIA expected yields A= Ni RIA expected yields 78 Ni: 70 at/s 100 Sn: 8 at/s Intensity and Selectivity

 secondary =  production  N target  beam x  release – transport x  ionization x  transport - storage - post-acceleration I secondary /I total Intensity Purity Event rate I counts (reaction) = I secondary  branching  reaction N secondary target x  spectrometer x  detector I counts (decay) = I secondary  branching x  detector Peak to background R resolving power (suppression of background, identification of events) Figures of Merit (in first approximation)

MeV/u E x ( ) = 4 MeV B(E2)=500 e 2 fm 4  (Coulex)  100 mb N secondatytarget (58 Ni) = 3mg/cm2 N target ( 238 U,  = 100 pbarn) = 100 g/cm 2 Countrate estimate“Ideal (realistic?)” I counts ( ) (minimum) 10 cts/day   x  spectrometer 10 % I secondary ( 78 Ni)375 at/s  post-accelerator 50 %  ionization 50 %  release 50 % I beam (p, 1 GeV)19  A needed!! needs pure conditions modest intensity! An example: Coulomb excitation of 78 Ni at an ISOL system

“Ideal (realistic?)”NowGain factor I beam (p, 1 GeV)100  A direct (5000  A indirect) 10  A10 (> 500)  release 50 %0.1 %500  ionization 50 %10 %5  post-accelerator 50 %10 %5 I secondary ( 78 Ni)2000 at/s58 at/h 10 5   x  spectrometer 10 %1 %10  10 4 beam purity? 78 Ni produced at an ISOL system: rates

Now (1) ProposedGain factor I beam ( 238 U, 1 GeV/u)10 10 at/s at/s100  in-flight separator % (  5%)30 – 60 % (  50%) (2) 10 I secondary ( 78 Ni)35 at/h10 at/s (3) 1000 (1) based on the first identification of 78 Ni C. Engelmann et al., Z. Phys. A352 (1995) 351 * I( 238 U) = at/s *  in-flight separator = 1.6% * I( 78 Ni) = 0.5 at/day (2) GSI: Conceptual Design Report (3) RIA: I( 238 U) = MeV/u I( 78 Ni) = 70 at/s ! ! ! N sec. target (IF) = 100 x (ISOL) but Low energy background and Doppler correction 78 Ni produced at an IF system: rates

Stopping of fragments in a gas cell (I) 100 cm 30 cm 0.5 – 1 bar Delay (ms) Argon Helium E/N ( V. cm 2 ) G. ANL Heavy-Ion Beam High-power target Range bunching Gas catcher Low energy beam range bunching stopping of reaction products in buffer gas electrical fields (AC and DC) remove electrons (neutralization) drag ions towards exit hole

heavy-ion ion guide fission ion guide Shiptrap RADRIS RIA M. Huyse,- Nucl. Instr. Meth. B what is the intensity limit? Stopping of fragments in a gas cell (II) He (1 atm) laser ionization after the plasma has decayed increased selectivity! Fragmentation G. ANL and GSI G. MSU M. RIKEN

Laser ion source at ISOLDE Energy (eV) 0 4 efficiency up to 10 % selectivity: depending on the implementation applicable for many elements (universal) high-temperature cavity laser photo ions surface ions Laser Ion Source

 -decay of 78 Cu at ISOLDE 78 Ni  0.2 s 78 Cu 0.34 s 78 Zn 1.5 s 78 Ga 5.5 s 78 Ge 88 m 78 As 1.5 h 78 Se N=50 Z=28 1  10 2  10 4  relative J.M. Daugas et al. Phys. Lett. B476 (2000) (2 + ) (8 + ) (6 + ) (4 + ) 78 Zn 908 keV 890 keV 730 keV p(1 GeV) + Ta-rod  neutron neutron U  78 Cu  no deep spallation The problem of selectivity: an example from ISOL

laser ionization of Cu isotopes  -gated gamma decay spectrum Energy (keV) Ga 78 Cu 730 keV 890 keV laser on laser off Energy (keV) Production rates: J.M. Daugas et al. Phys. Lett. B476 (2000) (2 + ) (8 + ) (6 + ) (4 + ) 78 Zn 908 keV 890 keV 730 keV The decay of 78 Cu

(1 + ) (3 - ) (6 - ) 70 Cu (2) s 33(2) s 44.5(2) s (keV)  V. Fedoseev, U. Koster, J. Van Roosbroeck et al., ISOLDE laser ionization in a hot cavity different hyperfine splitting for the different isomers enhancement of specific isomers increase selectivity of laser ion sources reduce power, pressure and Doppler broadening Production of isomeric beams: 70 Cu m1,m2,g

production ionization purification measurement: identification reaction / decay / g.s. properties... acceleration / deceleration / storage high-power targets geometrical optimization radiation safety laser ionization (selectivity, isomeric beams) release optimization, chemistry gas cell (space-charge limit, laser re-ionization) charge-state breeding vs. 1 + acceleration RF-coolers, traps (intensity limit, high- resolution mass separator)  -identification fast tracking of particles high-power accelerators Outlook