Geant4-Genova Group Validation of Susanna Guatelli, Alfonso Mantero, Barbara Mascialino, Maria Grazia Pia, Valentina Zampichelli INFN Genova, Italy IEEE.

Slides:



Advertisements
Similar presentations
Maria Grazia Pia, INFN Genova Precision Electromagnetic Physics in Geant4: the Atomic Relaxation Models A. Mantero, B. Mascialino, Maria Grazia Pia, S.
Advertisements

Maria Grazia Pia, INFN Genova Test & Analysis Project Maria Grazia Pia, INFN Genova on behalf of the T&A team
Precision validation of Geant4 electromagnetic physics Katsuya Amako, Susanna Guatelli, Vladimir Ivanchenko, Michel Maire, Barbara Mascialino, Koichi Murakami,
Maria Grazia Pia, INFN Genova Geant4 Physics Validation (mostly electromagnetic, but also hadronic…) K. Amako, S. Guatelli, V. Ivanchenko, M. Maire, B.
Simulation of X-ray Fluorescence and Application to Planetary Astrophysics A. Mantero, M. Bavdaz, A. Owens, A. Peacock, M. G. Pia IEEE NSS -- Portland,
Maria Grazia Pia, INFN Genova Atomic Relaxation Models A. Mantero, B. Mascialino, Maria Grazia Pia INFN Genova, Italy P. Nieminen ESA/ESTEC
Test Beam Simulation for ESA BepiColombo Mission Marcos Bavdaz, Alfonso Mantero, Barbara Mascialino, Petteri Nieminen, Alan Owens, Tone Peacock, Maria.
Hee Seo, Chan-Hyeung Kim, Lorenzo Moneta, Maria Grazia Pia Hanyang Univ. (Korea), INFN Genova (Italy), CERN (Switzerland) 18 October 2010 Design, development.
Low Energy Electromagnetic Physics
Maria Grazia Pia Experimental validation of models in the pre-equilibrium and nuclear de-excitation phase G.A.P. Cirrone 1, G. Cuttone 1, F. Di Rosa 1,
Barbara Mascialino, INFN Genova An update on the Goodness of Fit Statistical Toolkit B. Mascialino, A. Pfeiffer, M.G. Pia, A. Ribon, P. Viarengo
Max-Planck-Institut für extraterrestrische Physik and Halbleiterlabor, Germany Space Sciences Lab., UC Berkeley, USA CNES, Toulouse, France INFN Genova.
Maria Grazia Pia, INFN Genova Geant4 Physics Validation Geant4 Space User Workshop Pasadena, 6-10 November 2006 M.G. Pia On behalf of the LowE EM and Advanced.
20 February 2002Geant4 Users' Workhsop, SLAC1 Low-Energy Electromagnetic Processes in P. Nieminen (ESA-ESTEC)
Susanna Guatelli Radiation Shielding Simulation For Interplanetary Manned Missions S. Guatelli 1, B. Mascialino 1, P. Nieminen 2, M.G. Pia 1 1 INFN Genova,
Luciano Pandola, INFN Gran Sasso Luciano Pandola INFN Gran Sasso Valencia, April 14 th, 2005 Geant4 and the underground physics community.
Maria Grazia Pia, INFN Genova Geant4 Electromagnetic Validation (mostly electromagnetic, but also a bit of hadronic…) K. Amako, G.A.P. Cirrone, G. Cuttone,
Maria Grazia Pia, INFN Genova CERN, 26 July 2004 Background of the Project.
1 M.G. Pia et al. The application of GEANT4 simulation code for brachytherapy treatment Maria Grazia Pia INFN Genova, Italy and CERN/IT
Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova
Maria Grazia Pia, INFN Genova – CHEP 2001 ow Energy Electromagnetic Physics ow Energy Electromagnetic Physics S. Chauvie,G. Depaola, F. Longo, V. Ivanchenko,
Validation of the Bremsstrahlung models Susanna Guatelli, Barbara Mascialino, Luciano Pandola, Maria Grazia Pia, Pedro Rodrigues, Andreia Trindade IEEE.
Geant4-INFN (Genova-LNS) Team Validation of Geant4 electromagnetic and hadronic models against proton data Validation of Geant4 electromagnetic and hadronic.
Maria Grazia Pia Systematic validation of Geant4 electromagnetic and hadronic models against proton data Systematic validation of Geant4 electromagnetic.
Comparison of data distributions: the power of Goodness-of-Fit Tests
Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics R. Capra, S. Chauvie, G.A.P. Cirrone, G. Cuttone, F. Di Rosa, Z. Francis, S. Guatelli,
Physics data management tools: computational evolutions and benchmarks Mincheol Han 1, Chan-Hyeung Kim 1, Lorenzo Moneta 2, Maria Grazia Pia 3, Hee Seo.
Alfonso Mantero, INFN Genova Models for the Simulation of X-Ray Fluorescence and PIXE A. Mantero, S. Saliceti, B. Mascialino, Maria Grazia Pia INFN Genova,
Summary of Work Zhang Qiwei INFN - CIAE. Validation of Geant4 EM physics for gamma rays against the SANDIA, EPDL97 and NIST databases.
Maria Grazia Pia, INFN Genova Low Energy Electromagnetic Physics Maria Grazia Pia INFN Genova on behalf of the Low Energy Electromagnetic.
OOAD… LowE Electrons From HEP computing to medical research and vice versa Bidirectional From HEP computing to medical research and vice versa Bidirectional.
Geant4 Workshop 2004 Maria Grazia Pia, INFN Genova Physics Book Maria Grazia Pia INFN Genova on behalf of the Physics Book Team
Maria Grazia Pia Simulation for LHC Radiation Background Optimisation of monitoring detectors and experimental validation Simulation for LHC Radiation.
REMSIM Radiation Exposure and Mission Strategies for Interplanetary Manned Missions Susanna Guatelli, 9 th March 2004, Genova, Italy
IEEE NSS October – 2 November 2013 Seoul, Korea T. Basaglia 1, M. Batic 2, M. C. Han 3, G. Hoff 4, C. H. Kim 3, H. S. Kim 3, M. G. Pia 5, P. Saracco.
Maria Grazia Pia, INFN Genova New Physics Data Libraries for Monte Carlo Transport Maria Grazia Pia 1, Lina Quintieri 2, Mauro Augelli 3, Steffen Hauf.
Susanna Guatelli & Barbara Mascialino G.A.P. Cirrone (INFN LNS), G. Cuttone (INFN LNS), S. Donadio (INFN,Genova), S. Guatelli (INFN Genova), M. Maire (LAPP),
Geant4 Space User Workshop 2004 Maria Grazia Pia, INFN Genova Proposal of a Space Radiation Environment Generator interfaced to Geant4 S. Guatelli 1, P.
Maria Grazia Pia, INFN Genova 1 New models for PIXE simulation with Geant4 CHEP 2009 Prague, March 2009 Maria Grazia Pia INFN Genova G. Weidenspointner,
Validation of inner shell ionization cross sections for electron transport Sung Hun, Kim Nuclear Engineering, Hanyang University, Seoul, Republic of Korea.
Detector Simulation Presentation # 3 Nafisa Tasneem CHEP,KNU  How to do HEP experiment  What is detector simulation?
IEEE Nuclear Science Symposium and Medical Imaging Conference Short Course The Geant4 Simulation Toolkit Sunanda Banerjee (Saha Inst. Nucl. Phys., Kolkata,
Precision Validation of Geant4 Electromagnetic Physics Geant4 DNA Project Meeting 26 July 2004, CERN Michela.
Test Beam Simulation for ESA BepiColombo Mission Marcos Bavdaz, Alfonso Mantero, Barbara Mascialino, Petteri Nieminen, Alan Owens, Tone Peacock, Maria.
Electromagnetic Physics
Geant4 Training 2003 Electromagnetic Physics The full set of lecture notes of this Geant4 Course is available at
Physics Data Libraries: Content and Algorithms for Improved Monte Carlo Simulation Physics data libraries play an important role in Monte Carlo simulation:
Barbara MascialinoMonte Carlo 2005Chattanooga, April 19 th 2005 Monte Carlo Chattanooga, April 2005 B. Mascialino, A. Pfeiffer, M. G. Pia, A. Ribon,
Electromagnetic Physics Electromagnetic packages in Geant4 Standard Low Energy Optical Muons Different modeling approach Specialized.
20 September 1999Geant4 Workshop1 in Space : Examples of Past and Future Missions and Experiments P. Nieminen, ESA/ESTEC, The Netherlands.
Validation of the bremssrahlung process IV Workshop on Geant4 physics validation Susanna Guatelli, Luciano Pandola, Maria Grazia Pia, Valentina Zampichelli.
Validation of Geant4 EM physics for gamma rays against the SANDIA, EPDL97 and NIST databases Zhang Qiwei INFN-LNS/CIAE 14th Geant4 Users and Collaboration.
Maria Grazia Pia, INFN Genova and CERN1 Geant4 highlights of relevance for medical physics applications Maria Grazia Pia INFN Genova and CERN.
Luciano Pandola, INFN Gran Sasso Luciano Pandola INFN Gran Sasso Genova, July 18 th, 2005 Geant4 and the underground physics community.
Electromagnetic physics
Models for the Simulation of X-Ray Fluorescence and PIXE
Electromagnetic Physics
Geant4 REMSIM application
Test Beam Simulation for ESA BepiColombo Mission
Data libraries as a collaborative tool across Monte Carlo codes
Geant4: Electromagnetic Processes 3 V.Ivanchenko, BINP & CERN
Hadronic physics validation of Geant4
Geant4 physics validation: Bragg Peak
The Hadrontherapy Geant4 advanced example
An update on the Goodness of Fit Statistical Toolkit
Low-Energy Electromagnetic Processes in
Low Energy Electromagnetic Physics Use Cases and PhysicsLists
Precision validation of Geant4 electromagnetic physics
G. A. P. Cirrone1, G. Cuttone1, F. Di Rosa1, S. Guatelli1, A
The Geant4 Hadrontherapy Advanced Example
Presentation transcript:

Geant4-Genova Group Validation of Susanna Guatelli, Alfonso Mantero, Barbara Mascialino, Maria Grazia Pia, Valentina Zampichelli INFN Genova, Italy IEEE Nuclear Science Symposium San Diego, 30 October – 4 November 2006 Atomic Relaxation Atomic Relaxation against the NIST reference data

Geant4-Genova Group Geant4 Atomic Relaxation Geant4 Atomic Relaxation modelsFluorescence Auger electron emission It is used by Geant4 packages: Low Energy Electromagnetic –Photoelectric effect –Low Energy electron ionisation –Low Energy proton ionisation (PIXE) –Penelope Compton scattering Hadronic Physics –Nuclear de-excitation –Radioactive decay Geant4 Low Energy Electromagnetic package takes into account the detailed atomic structure of matter and the related physics processes It includes a package for Atomic Relaxation –Simulation of atomic de-excitation resulting from the creation of a vacancy in an atom by a primary process These physics models are relevant to many diverse experimental applications

Geant4-Genova Group Courtesy ESA Space Environment & Effects Analysis Section X-Ray Surveys of Asteroids and Moons Induced X-ray line emission: indicator of target composition (~100  m surface layer) Cosmic rays, jovian electrons Geant3.21 ITS3.0, EGS4 Geant4 Solar X-rays, e, p Courtesy SOHO EIT C, N, O line emissions included Geant4 fluorescence Geant4 fluorescence Original motivation from astrophysics requirements Wide field of applications beyond astrophysics 250 keV

Geant4-Genova Group Atomic Relaxation in Geant4 Two steps: 1.Identification of the atomic shell where a vacancy is created by a primary process (photoelectric, Compton, ionisation) cross sections The creation of the vacancy is based on the calculation of the primary process cross sections relative to the shells of the target atom Cross section modeling and calculation specific to each process products 2.Generation of the de-excitation chain and its products Common package, used by all vacancy-creating processes Geant4 Atomic Relaxation Generation of fluorescence photons and Auger electrons Determination of the energy of the secondary particles produced

Geant4-Genova Group Modelling foundation in Geant4 Low Energy Electromagnetic Package Calculation of shell cross sections EPDL97 –Based on the EPDL97 Livermore Library for photoelectric effect EEDL –Based on the EEDL Livermore Library for electron ionisation –Based on Penelope model for Compton scattering Detailed atom description and calculation of the energy of generated photons/electrons EADL –Based on the EADL Livermore Library

Geant4-Genova Group Verification and Validation of Geant4 physics Verification compliance of the software results with the underlying model = compliance of the software results with the underlying model –Unit tests (at the level of individual Geant4 classes)Validation comparison against experimental data = comparison against experimental data (Goodness-of-Fit) –Quantitative estimate of the agreement between Geant4 simulation and reference data through statistical methods (Goodness-of-Fit) systematic quantitative A systematic, quantitative validation of Geant4 physics models against reference experimental data is essential to establish the reliability of Geant4-based applications

Geant4-Genova Group Validation of Geant4 Atomic Relaxation Previous partial validation studies (collaboration with ESA) –Pure materials: limited number of materials examined –Complex materials: complex experimental set-up, large uncertainties on the target material composition NIST database Systematic validation project: NIST database as reference Authoritative, systematic collection of experimental data

Geant4-Genova Group Method and tools Geant4 test code to generate fluorescence and Auger transitions from all elements –Geant4 Atomic Relaxation handles 6 ≤ Z ≤ 100 Selection of experimental data subsets from NIST database –The NIST database also contains data from theoretical calculations Comparison of simulated/NIST data with Goodness-of-Fit test –Data grouped for the comparison as a function of Z according to the initial vacancy and transition type –Statistical Toolkit ( –Kolmogorov-Smirnov test p-value –The result of the agreement is expressed through the p-value of the test

Geant4-Genova Group Fluorescence - Shell-start 1 Shell-end Kolmogorov- Smirnov D p-value Geant4 ○ NIST Z E (keV)

Geant4-Genova Group Fluorescence - Shell-start 3 Shell-end Kolmogorov- Smirnov D p-value Geant4 ○ NIST

Geant4-Genova Group Fluorescence - Shell-start 5 Shell-end Kolmogorov- Smirnov D p-value Geant4 ○ NIST

Geant4-Genova Group Fluorescence - Shell-start 6 Shell-end Kolmogorov- Smirnov D p-value Geant4 ○ NIST

Geant4-Genova Group Auger electron emission Scarce experimental data in the NIST database –Often multiple data for the same Auger transition: ambiguous reference Analysis in progress: comparison of Geant4 simulation data against the NIST subset of experimental data Preliminary results: good qualitative agreement as in the case of X-ray fluorescence –Rigorous statistical analysis to be completed, will be included in publication

Geant4-Genova Group Conclusions Systematic, quantitative validation Systematic, quantitative validation of Geant4 Atomic Relaxation –Rigorous statistical methods to compare Geant4 models to reference data Comparison against NIST experimental data –Authoritative reference, recent review paper for X-ray transition energies Fluorescence –Analysis completed –Excellent agreement of Geant4 models with NIST data Auger electron emission –Analysis in progress Geant4 simulates X-ray fluorescence very precisely