Momentum Momentum is conserved – even in collisions with energy loss. Collisions Center of mass Impulse Chapter 9: Linear Momentum and Collisions Reading.

Slides:



Advertisements
Similar presentations
Impulse Momentum, and Collisions
Advertisements

Linear Impulse − Momentum
Linear Momentum Vectors again.
Conservation of Momentum
Impulse and Momentum Honors Physics.
Center of Mass and Linear Momentum
Physics 111: Mechanics Lecture 12
Momentum and Impulse So far we’ve studied the properties of a single object; i.e. its motion and energy How do we analyze the motion of two or more objects.
Momentum Chapter 6. Underlined words are WOD.. Momentum Momentum: mass in motion. Abbreviated with a rho which looks like a “p” Momentum is a vector!!
Physics C Energy 4/16/2017 Linear Momentum Bertrand.
PHYS16 – Lecture 14 Momentum and Collisions October 8, 2010.
Chapter 7 Impulse and Momentum.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lectures 27, 28.
Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lectures
AP Physics Impulse and Momentum. Which do you think has more momentum?
Law of Conservation of Momentum. If the resultant external force on a system is zero, then the vector sum of the momentums of the objects will remain.
Momentum and Impulse.
Fri. Feb. 25th1 PHSX213 class Class stuff –Questions ? Conservation of Linear Momentum Collision terminology Collisions.
1.4 MOMENTUM IN TWO DIMENSIONS. Momentum momentum of an object to be the product of mass (m) and velocity (v). Momentum is a vector quantity with SI Units.
Chapter 9 Systems of Particles. Section 9.2: Center of Mass in a Two Particle System Center of Mass is the point at which all forces are assumed to act.
Copyright © 2009 Pearson Education, Inc. PHY093 Lecture 2d Linear Momentum, Impulse and Collision 1.
AP Physics I.D Impulse and Momentum. 7.1 Impulse-Momentum Theorem.
Ch. 8 Momentum and its conservation
Chapter 6 Momentum and Collisions. Chapter Objectives Define linear momentum Compare the momentum of different objects Describe impulse Conservation of.
Chapter-7 Momentum and Impulse 1Momentum 2Impulse 3 Conservation of Momentum 4 Recoil 5 Elastic and Inelastic Collisions 6 Collisions at an Angle: An Automobile.
Momentum Chapter 6. Momentum ► Related to inertia, not the same. ► Symbol is p ► p=mv ► Units of kgm/s ► What is the momentum of a 75kg rock rolling at.
Momentum and Impulse Review 1.The velocity of a moving mass is called? ans: momentum 2.Force applied in a period of time is called? ans: impulse 3. The.
Momentum is a Momentum vectors Impulse Defined as a Impulse is.
Momentum and Collisions
Today: Momentum – chapter 9 11/03 Finish momentum & review for exam 11/8 Exam 2 (5 – 8) 11/10 Rotation 11/15 Gravity 11/17 Waves & Sound 11/22 Temperature.
Momentum and Its Conservation
Linear Momentum. 5-1 Linear Momentum Linear Momentum, p – defined as mass x velocity The unit is kg·m/s A quantity used in collisions So a small object.
Reading Quiz - Momentum
Linear Momentum Impulse & Collisions. What is momentum?  Momentum is a measure of how hard it is to stop or turn a moving object.  What characteristics.
Chapter 9 - Collisions Momentum and force Conservation of momentum
Chapter 5: Momentum Momentum: a measure of motion
Chapter 9: Linear Momentum & Collisions
Momentum, impulse, and collisions Chapter 8 Sections 1-5.
Linear Momentum and Collisions 9.1 Linear Momentum and Its Conservation9.2 Impulse and Momentum9.3 Collisions9.4 Elastic and Inelastic Collisions in One.
The ___________________ of a particle of mass m and velocity v is defined as The linear momentum is a vector quantity. It’s direction is along v. The.
Chapter 6 Linear Momentum. Units of Chapter 6 Momentum and Its Relation to Force Conservation of Momentum Collisions and Impulse Conservation of Energy.
Momentum and Collisions Linear Momentum The linear momentum of a particle or an object that can be modeled as a particle of mass m moving with a velocity.
Linear Momentum AP Physics Chapter 7. Linear Momentum 7.1 Momentum and Its Relation to Force.
Systems of Particles. Rigid Bodies Rigid Bodies - A collection of particles that do not move relative to each other. What forces are present with the.
Linear Momentum October 31, Announcements Turn in homework due today:  Chapter 8, problems 28,29,31  Next week, W-F, Rocket Project.
Momentum.
Linear Momentum. 5-1 Linear Momentum Linear Momentum, p – defined as mass x velocity The unit is kgm/s A quantity used in collisions So a small object.
Lecture 14: Collisions & Momentum. Questions of Yesterday A 50-kg object is traveling with a speed of 100 m/s and a 100-kg object is traveling at a speed.
Momentum Momentum is conserved – even in collisions with energy loss due to friction/deformation. Impulse Chapter 9: Linear Momentum and Collisions Reading.
Phys211C8 p1 Momentum everyday connotations? physical meaning the “true” measure of motion (what changes in response to applied forces) Momentum (specifically.
Physics 1D03 - Lecture 26 Collisions Conservation of Momentum Elastic and inelastic collisions.
Chapter 7 Impulse and Momentum. You are stranded in the middle of an ice covered pond. The ice is frictionless. How will you get off?
Collisions Inelastic vs. Elastic Pg. 233 – 239 Pg
 car crashes car crashes 
2D Collisions Physics 12. Clip of the day: Minutephysics: What is fire? gE
Chapter-7 Momentum and Impulse 1Momentum 2Impulse 3 Conservation of Momentum 4 Recoil 5 Elastic and Inelastic Collisions 6 Collisions at an Angle: An Automobile.
PHY 101: Lecture The Impulse-Momentum Theorem 7.2 The Principle of Conservation of Linear Momentum 7.3 Collision in One Dimension 7.4 Collisions.
Momentum & Impulse Day #1: Introduction HW #7. Momentum & Collisions: Define Momentum: Momentum, p, is defined as the product of mass and velocity. Units:
Conservation of Momentum Conservation of momentum: Split into components: If the collision is elastic, we can also use conservation of energy.
Chapter 9:Linear Momentum
Chapter-7 Momentum and Impulse Outline
Ch. 11 slides.ppt Momentum.ppt.
Law of Conservation of Momentum
AP Physics Chapter 6 Momentum and Collisions
PHYSICS 103: Lecture 13 Review of HW Momentum Agenda for Today:
AP Physics Chapter 6 Momentum and Collisions
Chapter 9: Linear Momentum and Collisions
Systems of Particles.
Presentation transcript:

Momentum Momentum is conserved – even in collisions with energy loss. Collisions Center of mass Impulse Chapter 9: Linear Momentum and Collisions Reading assignment: Chapter 9.1 to 9.7 Homework 9.1 (due Wednesday, Oct. 17): QQ2, AE1, AE5, 5, 9, 10, 19, 27, 28, 29, 32, 33 Homework 9.2 (due Thursday, Oct. 18): 11, 14, 37, 38, 65 All grades will be continued to be posted on our web page; listed by last four digits of student ID

The linear momentum of a particle of mass m and velocity v is defined as The linear momentum is a vector quantity. It’s direction is along v. The components of the momentum of a particle: Chapter 9: Linear Momentum and Collisions

Conservation of linear momentum

Black board example 9.1 (similar to blocks and spring HW problem) You (100kg) and your skinny friend (50.0 kg) stand face-to- face on a frictionless, frozen pond. You push off each other. You move backwards with a speed of 5.00 m/s. Demo:How are rocket ships (in space) able to change their velocity? 2.What is your momentum after you pushed off? A. 0 kgm/s B. 250 kgm/s C. 500 kgm/s D. 750 kgm/s E kgm/s 1. What is the total momentum of the you- and-your-friend system? A. 0 kgm/s B. 250 kgm/s C. 500 kgm/s D. 750 kgm/s E kgm/s 4. How much energy (work) did you and your friend expend? 3. What is your friends speed after you pushed off? A. 0 m/s B. 5 m/s C. 10 m/s D. -5 m/s E. -10m/s

Elastic and inelastic collisions in one dimension Momentum is conserved in any collision, elastic and inelastic. Mechanical Energy is only conserved in elastic collisions. Perfectly inelastic collision: After colliding, particles stick together. There is a loss of kinetic energy (deformation). Elastic collision: Particles bounce off each other without loss of kinetic energy. Inelastic collision: Particles collide with some loss of kinetic energy, but don’t stick together.

Perfectly inelastic collision of two particles (Particles stick together) Notice that p and v are vectors and, thus have a direction (+/-) There is a loss in energy, E loss

Perfectly elastic collision of two particles (Particles bounce off each other without loss of energy. Energy is conserved : Momentum is conserved: By plugging one equation into the other, we can also derive:

Black board example 9.2 Two carts collide elastically on a frictionless track. The first cart (m 1 = 1kg) has a velocity in the positive x-direction of 2 m/s; the other cart (m = 0.5 kg) has velocity in the negative x-direction of 5 m/s. (a)Find the speed of both carts after the collision. (b)Now, what is the speed if the collision is perfectly inelastic? (c)How much energy is lost in the inelastic collision?

Black board example 9.3 and demo Determining the speed of a bullet A bullet (m = 0.01kg) is fired into a block (0.1 kg) sitting at the edge of a table. The block (with the embedded bullet) flies off the table (h = 1.2 m) and lands on the floor 2 m away from the edge of the table. a.) What was the speed of the bullet? b.) What was the energy loss in the bullet-block collision? v b = ? h = 1.2 m x = 2 m

Two-dimensional collisions (Two particles) Conservation of momentum: Split into components: If the collision is elastic, we can also use conservation of energy.

Black board example 9.4 Accident investigation. Two automobiles of equal mass approach an intersection. One vehicle is traveling towards the east with 29 mi/h (13.0 m/s) and the other is traveling north with unknown speed. The vehicles collide in the intersection and stick together, leaving skid marks at an angle of 55º north of east. The second driver claims he was driving below the speed limit of 35 mi/h (15.6 m/s) m/s ??? m/s a)Is he telling the truth? b)What is the speed of the “combined vehicles” right after the collision? c)How long are the skid marks (  k = 0.5)?

Motion of a System of Particles. Newton’s second law for a System of Particles The center of mass of a system of particles (combined mass M) moves like one equivalent particle of mass M would move under the influence of an external force.

Center of mass Center of mass for many particles: Where is the center of mass of this arrangement of particles. (m 3 = 2 kg; m 1 = m 2 = 1 kg)? Velocity of the center of mass:Acceleration of the center of mass: Black board example 9.5

A rocket is shot up in the air and explodes. Describe the motion of the center of mass before and after the explosion.

A method for finding the center of mass of any object. - Hang object from two or more points. - Draw extension of suspension line. - Center of mass is at intercept of these lines.

Impulse (change in momentum) A change in momentum is called “impulse”: During a collision, a force F acts on an object, thus causing a change in momentum of the object: For a constant (average) force: Think of hitting a soccer ball: A force F acting over a time  t causes a change  p in the momentum (velocity) of the ball.

A soccer player hits a ball (mass m = 440 g) coming at him with a velocity of 20 m/s. After it was hit, the ball travels in the opposite direction with a velocity of 30 m/s. Black board example What impulse acts on the ball while it is in contact with the foot? 2.The impact time is 0.1s. What average force is the acting on the ball? 3.How much work was done by the foot? (Assume an elastic collision.) 1A. 0 1B. 20 kg ‧ m/s 1C. 22 kg ‧ m/s 1D. 30 kg ‧ m/s 1E. 33 kg ‧ m/s 2A. 0 2B. 200 N 2C. 220 N 2D. 300 N 2E. 330 N 3A. 0 3B. 110 J 3C. 220 J 3D. 300 J 3E. 330 J