Thermal Properties and Moisture Diffusivity

Slides:



Advertisements
Similar presentations
3.2 Thermal Properties.
Advertisements

As close to chemistry as we can get
Chapter-10 Temperature and Heat 1 Temperature and First Law of Thermodynamics 2Heat and Specific Heat Capacity 3First Law of Thermodynamics 4Ideal Gas.
Investigating the Temperature of Air
PTT 201/4 THERMODYNAMICS SEM 1 (2012/2013) 1. light Energy can exist in numerous forms: Thermal Mechanical Kinetic Potential Electric Magnetic Chemical.
Temperature, Heat, and the First Law of Thermodynamics
Thermal Physics.
Psychrometrics.
PSYCHOMETRICS INTRODUCTION INDEXES PSYCHOMETRIC CHART INTRODUCTION:
Thermal Energy.
Thermochemistry Review. The number of degrees between the freezing point of water and the boiling point of water on the Celsius scale is:
S PECIFIC H EAT Thermal Properties of Food. SPECIFIC HEAT Specific heat is the amount of heat required to increase the temperature of a unit mass of the.
HEAT TRANSFER WATER. HEAT Rapid movement of molecules Rapid movement of molecules Kinetic energy Kinetic energy Measured by thermometer = temperature.
CHE/ME 109 Heat Transfer in Electronics
Chapter 5 TEMPERATURE AND HEAT Dr. Babar Ali.
Convection Convection: transfer of heat by a flowing liquid or gas
PM3125 Content of Lectures 1 to 6: Heat transfer: Source of heat
Chapter 3 PROPERTIES OF PURE SUBSTANCES
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 16 Physics, 4 th Edition James S. Walker.
Heat. Heat and Temperature Kinetic Molecular Theory – Is the theory that matter is made up of atoms (smallest piece of matter) and that these atoms are.
Lecture 12: Thermal Properties, Moisture Diffusivity Chpt 8
Chapter 9 Preview Objectives Defining Temperature Thermal Equilibrium
Phys141 Principles of Physical Science Chapter 5 Temperature and Heat Instructor: Li Ma Office: NBC 126 Phone: (713)
1 HVAC317 - Refrigeration Refrigeration Theory. 2 Terms Heat: A form of energy. Refrigeration: The process of removing heat from a space. British Thermal.
Lecture Outline Chapter 11 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Chapter 10 Heat Thermal Equilibrium Bring two objects into thermal contact. –They can exchange energy. When the flow of energy stops, the objects are.
PRINCIPLES OF HEAT TRANSFER
Chapter 6.  Temperature ◦ Is something hot or cold? ◦ Relative measure.
Heat and Energy Chapter 3 section 2
Thermal Energy Heat.
Chapter 1 – Section 4 Temperature in Thermal Systems.
Heat is a form of:. Everything in the universe has heat energy! Your BODY, your CAR…even ICE!
Heat is a form of:. Everything in the universe has heat energy! Your BODY, your CAR…even ICE!
Temperature and Heat.
Chapter 23 Section 1 Handout
Temperature is a measure of the average kinetic energy of the particles in a substance. It is the kinetic energy of a typical particle.
< BackNext >PreviewMain Section 1 Temperature What Is Temperature? Temperature is a measure of the average kinetic energy of the particles in an object.
Thermodynamics. Thermodynamics is the branch of Physics that deals with the conversion of heat into other forms of energy, or other forms of energy into.
Thermodynamics. Thermodynamics – The study of heat transformation. Temperature – A measure of the average kinetic energy of the particles in an object.average.
BASIC PRINCIPLES OF HEAT & COLD. How the Body Produces Heat All food & drinks contain Calories A Calorie is the heat value of food Calories in the body.
Basic cooking principles Judgment, Knowledge, Experience.
Thermal Energy and Heat. Kinetic Theory of Matter ALL particles that make up matter are constantly in motion. ALL particles that make up matter are constantly.
Food Process Engineering
Objectives Solve thermodynamic problems and use properties in equations (today) Calculate heat transfer by all three modes including phase change (Thursday)
Matter Intermolecular Forces  Are the forces between neighboring molecules.
10-3: Changes in Temperature and Phase Objectives: Perform calculations with specific heat capacity. Perform calculations involving latent heat. Interpret.
Temperature and Heat Temperature & Scales Thermometry Thermal Expansion Heat and Internal Energy Heat Transfer Heat and Temperature Change, Specific.
Water in the Atmosphere Chapter 18, Section 1. Water in the Atmosphere  Precipitation – any form of water that falls from a cloud  When it comes to.
Chapter 9 Heat.
Ch. 6 – Thermal Energy. Sec. 1 – Temperature & Heat ENERGY Kinetic (KE) Potential – (PE) Energy of Motion Energy Stored.
Thermal Energy & Energy Transfer. Kinetic-Molecular Theory in a hot body, the particles move faster, and thus have a higher energy than particles in a.
Investigation One.  The term used to describe the total of all the energy within a substance.  Heat is also known as thermal energy.  Includes both.
Vadodara institute of engineering Harshang shah( )
Heat, Temperature, Heat Transfer, Thermal Expansion & Thermodynamics.
Heat Changes in Temperature and Phase. Specific Heat Capacity Specific heat capacity – the quantity of energy needed to raise the temperature of 1 kg.
CHANGES IN TEMPERATURE AND PHASE Holt Chapter 10, Section 3.
EXAMPLE 1. Heat energy in air drying A food containing 80% water is to be dried at 100oC down to moisture content of 10%. If the initial temperature of.
Thermal Response of Climate System
Food Dehydration (Drying)
Introduction to Food Engineering
PSYCHOMETRICS INTRODUCTION INDEXES PSYCHOMETRIC CHART INTRODUCTION:  PSYCHOMETRICS IS THE STUDY OF MOIST AIR.  THE PSYCHOMETRIC CHART IS A GRAPHIC REPRESENTATION.
Thermal Properties, Moisture Diffusivity Chpt 8
Psychrometrics – Lecture 3
Topics in Processing Dr. C. L. Jones Biosystems and Ag. Engineering.
Psychrometrics – Lecture 3
Topics in Processing Dr. C. L. Jones Biosystems and Ag. Engineering.
Chapter-10 Temperature and Heat
Lecture Objectives Learn about Psychrometric Chart Quantities
Topics in Processing Dr. C. L. Jones Biosystems and Ag. Engineering.
Thermal Energy.
Presentation transcript:

Thermal Properties and Moisture Diffusivity BAE2023

Thermal Properties, Moisture Diffusivity Processing and Storage of Ag Products Heating Cooling Combination of heating and cooling Grain dried for storage Noodles dried Fruits/Vegetables rapidly cooled Vegetables are blanched, maybe cooked and canned Powders such as spices and milk: dehydrated Cooking, cooling, baking, pasteurization, freezing, dehydration: all involve heat transfer Design of such processes require knowledge of thermal properties of material

Continue…. Heat is transferred by Conduction: Temperature gradient exists within a body…heat transfer within the body Convection: Heat transfer from one body to another by virtue that one body is moving relative to the other Radiation: Transfer of heat from one body to another that are separated in space in a vacuum. (blackbody heat transfer) We’ll consider Conduction w/in the product Convection: transfer by forced convection from product to moving fluid Moisture movement through agricultural product is similar to movement of heat by conduction Moisture diffusivity Volume change due to moisture content change

Continue…. Terms used to define thermal properties Specific heat Thermal conductivity Thermal diffusivity Thermal expansion coefficient Surface heat transfer coefficient Sensible and Latent heat Enthalpy

Specific Heat Specific Heat: Amount of heat required to raise temperature of unit amount of substance by one degree Units: 𝐾𝐽 𝐾𝑔°𝐾 (SI System) 𝐵𝑇𝑈 lb°𝐹 (English System) 𝐶𝑎𝑙. 𝑔°𝐾 (if calories are used) Conversion of units: 1 𝐾𝐽 𝐾𝑔°𝐾 = 0.239 𝐵𝑇𝑈 lb°𝐹 =0.239 𝐶𝑎𝑙. 𝑔°𝐾

Specific Heat Q = M Cp (T2-T1) Once Specific heat of material is known, then the amount of heat (Q) needed to increase temp. from T1 to T2 is calculated by: Q = M Cp (T2-T1) Where, Q = quantity of heat required to change temperature of a mass Cp = Specific heat at constant pressure M = mass or weight Water is a major component of all agricultural products Cp of water = 4.18 = 1 Cp of oils and fats = ½ of Cp of water ………See Table 8.1 pg. 219 Cp of grains, powders = ¼ to 1/3 of Cp of water Cp of ice = ½ Cp of H2O ( therefore, less heat required to raise temp. of frozen product then the same product when it is thawed)

Specific heat Eq. for calculating Cp based on moisture Content For liquid H2O Cp = 0.837 + 3.348 M above freezing For solid H2O Cp = 0.837 + 1.256 M below freezing Eq. based on composition Cp=4.18Xw+1.711Xp+1.928Xf+1.547 Xc+0.908Xa X is the mass or weight fraction of each component The subscript denote following components: w=water, p= protein, f=fat, c= carbohydrate, a=ash

Thermal Conductivity (k) Measure of ability to transmit heat = -k A K= coefficient of thermal conductivity For one dimensional heat flow in x direction, k is numerically equal to the quantity of heat (Q) that will flow across a unit cross sectional area (A) per unit of time (t) in response to a temperature gradient () of 1 degree per unit distance in x direction Units: (SI system) (English System) 1 = 1.731

Thermal Conductivity (k) k water =0.566 at 0°C = 0.602 at 20°C = 0.654 at 60°C At room temp. value of k for endosperm of cereal grains, flesh of fruits and veg., dairy products, fats and oil and sugar are less than that of water. Higher the moisture content higher will be thermal conductivity of food product Another factor is porosity e.g. freeze dried products and porous fruits like apple have low thermal conductivity.

Thermal Conductivity (k) If we don’t know thermal conductivity, approximate using... K = kw Xw + ks(1-Xw) Where, Kw =Thermal conductivity of water Xw= Weight fraction of water Ks = Thermal conductivity of solids = 0.259 𝑊 m°𝐾 If the moisture in product is more than 50%, then K = 0.056 + 0.57Xw

Thermal Diffusivity (α) α quantifies the materials ability to conduct heat relative to its ability to store heat. α = Where, α = Thermal Diffusivity, Units () or () k = Thermal conductivity = density of material = Specific heat at constant pressure Example : Estimate the thermal diffusivity of a peach at 22 C.

Surface heat transfer coefficient (h) When a body is placed in flowing stream of liquid or gas, the body’s temperature will change until it eventually reaches in equilibrium with the fluid. In eq. form also known as Newton’s Law of cooling 𝑑𝑄 𝑑𝑡 = h A (Tf- Ts) Where, h = surface heat transfer coefficient and has same units as k i.e. 𝑊 m°𝐾 Tf = temp. of fluid Ts = temp of solid body h depends on fluid velocity, surface characteristics of solids, size and shape of solid and fluid properties ( density and viscosity) Difficult to tabulate value of h, therefore experimentally determined

Sensible and Latent heat Sensible heat: Temperature that can be sensed by touch or measured with a thermometer. Temperature change due to heat transfer into or out of product Latent heat: Transfer of heat energy with no accompanying change in temperature. Happens during a phase change...solid to liquid...liquid to gas...solid to gas

Latent heat (L) Latent Heat, L, (kJ/kg or BTU/lb) Heat that is exchanged during a change in phase Dominated by the moisture content of foods Requires more energy to freeze foods than to cool foods (90kJ removed to lower 1 kg of water from room T to 0 °C and 4x that amount to freeze food) 420 kJ to raise T of water from 0 ° C to 100 ° C, 5x that to evaporate 1 kg of water Heat of vaporization is about 7x greater than heat of fusion (freezing) Therefore, evaporation of water is energy intensive (concentrating juices, dehydrating foods…)

Latent heat (L) Determine L experimentally when possible. When data is not available (no tables, etc) use…. L = 335 Xw where Xw is weight fraction of water Many fruits, vegetables, dairy products, meats and nuts are given in ASHRAE Handbook of Fundamentals

Enthalpy (h) Units: (kJ/kg or BTU/lb) Heat content of a material. Used frequently to evaluate changes in heat content of steam or moist air Combines latent heat and sensible heat changes ΔQ = M(h2-h1) Where, ΔQ = amount of heat needed to raise temperature from T1 to T2 M = mass of product h2= enthalpy at temp T1 h1 = enthalpy at temp T2

Enthalpy (h) Approach useful when one of the temperatures is below freezing Measurements based on zero values of enthalpy at a specified temperature e.g. at - 40°C, -18°C or 0°C. Enthalpy changes rapidly near the freezing point Change in enthalpy of a frozen food can be calculated from eq. below: Δh = M cp(T2 – T1) + MXw L Xw is the mass fraction of water that undergoes phase change(frozen fraction) L is the latent heat of fusion of water M is the mass of product Δh = Change in enthalpy of frozen food

Example Example 8.3: Calculate the amount of heat which must be removed from 1 kg of raspberries when their temperature is reduced from 25C to -5C. Assume that the specific heat of raspberries above freezing is 3.7 kJ/kgC and their specific heat below freezing is 1.86 kJ/kgC. The moisture content of the raspberries is 81% and the ASHRAE tables for freezing of fruits and vegs. Indicate that at -5C, 27% will not yet be frozen.

Homework Assignment Due February 20th Problem 1: Determine the amount of heat removed from 1.5 kg of bologna (sausage) when cooled from 24C to -7C. Assume MC of 59% and at -7C, 22% won’t be frozen. Problem 2: Estimate the thermal diffusivity of butter at 20°C.