SGES 1302 INTRODUCTION TO EARTH SYSTEM

Slides:



Advertisements
Similar presentations
CHAPTER 5: Formation of the Solar System and Other Planetary Systems.
Advertisements

Chapter 8 Formation of the Solar System
Formation of the Solar System
The Solar System Models Formation Inner Planets Outer Planets Other Objects in Space.
UNIT 2 THE SOLAR SYSTEM Vocabulary Review. THE FORCE OF ATTRACTION BETWEEN OBJECTS THAT IS DUE TO THEIR MASSES gravity.
Our Solar System. Your Parents Solar System 21 st Century Solar System.
Structure & Formation of the Solar System
 The outer planets are called Jovian or Jupiter- like.  These planets are made of gas and are several times more massive than the Earth.  The Jovian.
The Universe. The Milky Way Galaxy, one of billions of other galaxies in the universe, contains about 400 billion stars and countless other objects. Why.
Chapter 8 Welcome to the Solar System. 8.1 The Search for Origins Our goals for learning What properties of our solar system must a formation theory explain?
The Solar System 1 star 9 8 planets 63 (major) moons
UNIT 2 THE SOLAR SYSTEM Vocabulary Review. IN THE ORBIT OF A PLANET OR ANOTHER BODY IN THE SOLAR SYSTEM, THE POINT THAT IS FARTHEST FROM THE SUN aphelion.
The Origin of the Solar System
An Introduction to Astronomy Part VI: Overview and Origin of the Solar System Lambert E. Murray, Ph.D. Professor of Physics.
© 2011 Pearson Education, Inc. The Solar System. © 2011 Pearson Education, Inc. Now known: Solar system has 166 moons, one star, eight planets (added.
The Formation of the Solar System. Model Requirements Each planet is relatively isolated in space. The orbits of the planets are nearly circular. The.
Copyright © 2010 Pearson Education, Inc. Our Solar System.
© 2011 Pearson Education, Inc. Chapter 6 The Solar System.
Our Solar System It's nice and all, but…... Each planet is about twice as far from the Sun as the planet before it.
The Planets in our Solar System
Formation of the Solar System Chapter 27 page 684-
Warm-up 4/22/15 Take out your Study Guides!! Review for 10 minutes Target TEST TIME! 1.
The Solar System. What's a solar system? Patterns in distances 1.4 – 1.8 times the distance of previous planet. 1.4 – 1.8 times the distance of previous.
Origin of the Solar System. Stars spew out 1/2 their mass as gas & dust as they die.
THE SOLAR SYSTEM. Solar System Solar System- a star and all the objects orbiting it. Our solar system includes the Sun and all of the planets, dwarf planets,
1 Structure & Formation of the Solar System What is the Solar System? –The Sun and everything gravitationally bound to it. There is a certain order to.
Survey of the Solar System
AST 111 Lecture 15 Formation of the Solar System.
Unit 2 Lesson 2 Gravity and the Solar System
Survey of the Solar System. Introduction The Solar System is occupied by a variety of objects, all maintaining order around the sun The Solar System is.
Chapter 11 The Structure of the solar system. Distances in Space Distances are sol large in the Solar System that you can’t just use meters or kilometers.
23.1 The Solar System The Solar System.
Our Solar System.
Formation of our solar system: The nebular hypothesis (Kant, 1755) Hydrogen (H), He (He) and “stardust” (heavier elements that were formed in previous.
© 2010 Pearson Education, Inc. Formation of the Solar System.
© 2010 Pearson Education, Inc. Solar System Overview Earth, as viewed by the Voyager spacecraft.
Forming Earth and Our Solar System By David and Jake Thank You!
Introduction to the Solar System The bright star Antares embedded in dust and gases.
Chapter 4 Exploring Our Evolving Solar System. Comparing the Planets: Orbits The Solar System to Scale* – The four inner planets are crowded in close.
The Solar System. According to Aug 24, 06 Resolution the Solar System is composed of: – Eight planets with their moons – Three dwarf planets with their.
© 2010 Pearson Education, Inc. Chapter 8 Formation of the Solar System.
The Sun & The Solar System. Structure of the Sun The Sun has layers which can be compared to the Earth’s core, mantle, crust, and atmosphere All of these.
Lecture 32: The Origin of the Solar System Astronomy 161 – Winter 2004.
The Planets in our Solar System. Solar System Basics Our solar system is not only made of the Sun, the nine planets and their satellites, but also asteroids.
Origin of Our Solar System
THE BIRTH OF THE SOLAR SYSTEM. MODELS OF THE SOLAR SYSTEM Geocentric - Everything revolved around earth. (Aristotle and Ptolemy) Heliocentric – Planets.
Earth Science Chapter 17 Sections 1-2
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 4 The Solar System.
EXPLAIN THE NEBULAR HYPOTHESIS OF THE ORIGIN OF THE SOLAR SYSTEM. DESCRIBE HOW THE PLANETS FORMED DESCRIBE THE FORMATION OF THE LAND, THE ATMOSPHERE, AND.
Lecture Outlines Astronomy Today 7th Edition Chaisson/McMillan © 2011 Pearson Education, Inc. Chapter 6.
The Gas Giant (Jovian) Planets Jupiter Uranus Saturn Neptune The Terrestrial (Rocky/Metal) Planets Mercury Earth Venus Mars.
Formation of Solar System
THE SOLAR SYSTEM. BODIES IN THE SOLAR SYSTEM Our planet, Earth, is part of a system of planets that orbit a star, the sun. The solar system is comprised.
Warmup  What is the line of latitude that cuts through the center of the earth?  What is ZERO degrees longitude?  What is 180 degrees longitude?
The Formation of the Solar System. Model Requirements Each planet is relatively isolated in space. The orbits of the planets are nearly circular. The.
The Formation of Our Solar System The Nebular Hypothesis.
 Earth  Earth is a planet (a celestial body that orbits the sun)  The earth is round because of gravity.  It is the only planet that sustains life.
The Formation of the Solar System. The Nebular Hypothesis The Solar System formed ~ 4.6 billion years ago Evidence from:  meteorites ( billion.
Origins and Our Solar System
Our Solar System and Its Origin
Survey of the Solar System
Our Solar System and Its Origin
Gravity and the Solar System
Solar System Formation
The Formation of the Solar System
Formation of the Solar System and Other Planetary Systems.
Chapter 6 Our Solar System and Its Origin
3A Objectives Describe the nebular theory in detail.
The Solar System 1 star 9 8 planets 63 (major) moons
The Solar System.
Presentation transcript:

SGES 1302 INTRODUCTION TO EARTH SYSTEM LECTURE 2: Solar System

The Solar System Lecture 2 : SOLAR SYSTEM

The Solar System The Solar System consists of the Sun and the other celestial objects gravitationally bound to it: the eight planets, their 165 known moons, three currently identified dwarf planets and their four known moons, and billions of small bodies that include asteroids, Kuiper belt objects, comets, meteoroids, and interplanetary dust. In broad terms, the charted regions of the Solar System consist of: the Sun, four terrestrial inner planets, an asteroid belt composed of small rocky bodies, four gas giant outer planets, and a second belt, called the Kuiper belt, composed of icy objects. Beyond the Kuiper belt lies the scattered disc, the heliopause, and ultimately the hypothetical Oort cloud.

The Solar System Objects orbiting the Sun are divided into three classes: planets, dwarf planets, and small Solar System bodies. In order of their distances from the Sun, the planets are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. Six of the eight planets are in turn orbited by natural satellites, usually termed "moons" after Earth's Moon Each of the outer planets is encircled by planetary rings of dust and other particles. The three dwarf planets are Pluto, the largest known Kuiper belt object; Ceres, the largest object in the asteroid belt; and Eris, which lies in the scattered disc.

The Solar System

The Solar System A planet is any body in orbit around the Sun that a) has enough mass to form itself into a spherical shape and b) has cleared its immediate neighborhood of all smaller objects. From the time of its discovery in 1930 until 2006, Pluto was considered the Solar System's ninth planet. But in the late 20th and early 21st centuries, many objects similar to Pluto were discovered in the outer Solar System, most notably Eris, which is slightly larger than Pluto. On August 24, 2006 the International Astronomical Union defined the term "planet" for the first time, excluding Pluto and reclassifying it under the new category of dwarf planet along with Eris and Ceres. A dwarf planet is not required to clear its neighborhood of other celestial bodies.

The Solar System The remainder of the objects in orbit around the Sun are small Solar System bodies (SSSBs). Natural satellites, or moons, are those objects in orbit around planets, dwarf planets and SSSBs, rather than the Sun itself. A planet's distance from the Sun varies in the course of its year. Its closest approach to the Sun is called its perihelion, while its farthest distance from the Sun is called its aphelion. Astronomers usually measure distances within the Solar System in astronomical units (AU). One AU is the distance between the Earth and the Sun, or roughly 149 598 000 km. One light year, the best known unit of interstellar distance, is roughly 63,240 AU.

The Solar System

The Solar System - Layout The principal component of the Solar System is the Sun that contains 99.86% of the system's known mass and dominates it gravitationally. Jupiter and Saturn, the Sun's two largest orbiting bodies, account for more than 90% of the system's remaining mass. The currently hypothetical Oort cloud would also hold a substantial percentage were its existence confirmed. Most large objects in orbit around the Sun lie near the plane of Earth's orbit, known as the ecliptic. The planets are very close to the ecliptic while comets and Kuiper belt objects are usually at significantly greater angles to it. All of the planets and most other objects also orbit with the Sun's rotation in a counter-clockwise direction as viewed from a point above the Sun's north pole. There are exceptions, such as Halley's Comet.

The Solar System - Layout Objects travel around the Sun following Kepler's laws of planetary motion. Each object orbits along an ellipse with the Sun at one focus of the ellipse. The closer an object is to the Sun, the faster it moves. The orbits of the planets are nearly circular, but many comets, asteroids and objects of the Kuiper belt follow highly elliptical orbits. To cope with the vast distances involved, many representations of the Solar System show orbits the same distance apart. In reality, with a few exceptions, the farther a planet or belt is from the Sun, the larger the distance between it and the previous orbit. For example, Venus is approximately 0.33 AU farther out than Mercury, while Saturn is 4.3 AU out from Jupiter, and Neptune lies 10.5 AU out from Uranus.

The Solar System - Origin The Solar System is believed to have formed according to the nebular hypothesis, first proposed in 1755 by Immanuel Kant and independently formulated by Pierre-Simon Laplace. This theory holds that 4.6 billion years ago the Solar System formed from the gravitational collapse of a giant molecular cloud. This initial cloud was likely several light-years across and probably birthed several stars. Studies of ancient meteorites reveal traces of elements only formed in the hearts of very large exploding stars, indicating that the Sun formed within a star cluster, and in range of a number of nearby supernovae explosions. The shock wave from these supernovae may have triggered the formation of the Sun by creating regions of overdensity in the surrounding nebula, allowing gravitational forces to overcome internal gas pressures and cause collapse.

The Solar System - Origin As the nebula collapsed, conservation of angular momentum made it rotate faster. As the material within the nebula condensed, the atoms within it began to collide with increasing frequency. The center, where most of the mass collected, became increasingly hotter than the surrounding disc. As gravity, gas pressure, magnetic fields, and rotation acted on the contracting nebula, it began to flatten into a spinning protoplanetary disk with a diameter of roughly 200 AU and a hot, dense protostar at the center. After 100 million years, the pressure and density of hydrogen in the center of the collapsing nebula became great enough for the protosun to begin thermonuclear fusion. This increased until hydrostatic equilibrium was achieved, with the thermal energy countering the force of gravitational contraction. At this point the Sun became a full-fledged star.

The Solar System - Origin From the remaining cloud of gas and dust (the "solar nebula"), the various planets formed. They are believed to have formed by accretion: the planets began as dust grains in orbit around the central protostar; then gathered by direct contact into clumps between one and ten kilometres in diameter; then collided to form larger bodies (planetesimals) of roughly 5 km in size; then gradually increased by further collisions over the course of the next few million years. The inner Solar System was too warm for volatile molecules like water and methane to condense, and so the planetesimals which formed there were relatively small (comprising only 0.6% the mass of the disc) and composed largely of compounds with high melting points, such as silicates and metals. These rocky bodies eventually became the terrestrial planets. They are solid sphere with a metallic core surrounded by silicate shells. They have volcanoes and craters but only Earth is tectonically active today. Gasses exhaled by volcanoes became the atmospheres of Venus, Earth and Mars

The Solar System - Origin Farther out, the gravitational effects of Jupiter made it impossible for the protoplanetary objects present to come together, leaving behind the asteroid belt. Farther out still, beyond the frost line, where more volatile icy compounds could remain solid, Jupiter and Saturn became the gas giants. Uranus and Neptune captured much less material and are known as ice giants because their cores are believed to be made mostly of ices (hydrogen compounds). Once the young Sun began producing energy, the solar wind blew the gas and dust in the protoplanetary disk into interstellar space and ended the growth of the planets.

Next lecture: Planet Earth – internal structure & plate tectonics