Document Image Processing

Slides:



Advertisements
Similar presentations
電腦視覺 Computer and Robot Vision I
Advertisements

November 12, 2013Computer Vision Lecture 12: Texture 1Signature Another popular method of representing shape is called the signature. In order to compute.
Prénom Nom Document Analysis: Document Image Processing Prof. Rolf Ingold, University of Fribourg Master course, spring semester 2008.
Course Syllabus 1.Color 2.Camera models, camera calibration 3.Advanced image pre-processing Line detection Corner detection Maximally stable extremal regions.
CDS 301 Fall, 2009 Image Visualization Chap. 9 November 5, 2009 Jie Zhang Copyright ©
電腦視覺 Computer and Robot Vision I Chapter2: Binary Machine Vision: Thresholding and Segmentation Instructor: Shih-Shinh Huang 1.
Chapter 9: Morphological Image Processing
Course Syllabus 1.Color 2.Camera models, camera calibration 3.Advanced image pre-processing Line detection Corner detection Maximally stable extremal regions.
Each pixel is 0 or 1, background or foreground Image processing to
Morphological image processing – Part II
Introduction to Morphological Operators
Morphological Image Processing Md. Rokanujjaman Assistant Professor Dept of Computer Science and Engineering Rajshahi University.
September 10, 2013Computer Vision Lecture 3: Binary Image Processing 1Thresholding Here, the right image is created from the left image by thresholding,
Provides mathematical tools for shape analysis in both binary and grayscale images Chapter 13 – Mathematical Morphology Usages: (i)Image pre-processing.
Morphology Structural processing of images Image Processing and Computer Vision: 33 Morphological Transformations Set theoretic methods of extracting.
Introduction to Computer Vision
Lectures 10&11: Representation and description
Binary Image Analysis. YOU HAVE TO READ THE BOOK! reminder.
Morphological Image Processing
2007Theo Schouten1 Morphology Set theory is the mathematical basis for morphology. Sets in Euclidic space E 2 (or rather Z 2 : the set of pairs of integers)
E.G.M. PetrakisBinary Image Processing1 Binary Image Analysis Segmentation produces homogenous regions –each region has uniform gray-level –each region.
Digital Image Processing
Lecture 5. Morphological Image Processing. 10/6/20152 Introduction ► ► Morphology: a branch of biology that deals with the form and structure of animals.
Morphological Image Processing
Recap CSC508.
MATHEMATICAL MORPHOLOGY I.INTRODUCTION II.BINARY MORPHOLOGY III.GREY-LEVEL MORPHOLOGY.
Chapter 9.  Mathematical morphology: ◦ A useful tool for extracting image components in the representation of region shape.  Boundaries, skeletons,
S EGMENTATION FOR H ANDWRITTEN D OCUMENTS Omar Alaql Fab. 20, 2014.
CS 6825: Binary Image Processing – binary blob metrics
Digital Image Processing CSC331
Course Syllabus 1.Color 2.Camera models, camera calibration 3.Advanced image pre-processing Line detection Corner detection Maximally stable extremal regions.
September 23, 2014Computer Vision Lecture 5: Binary Image Processing 1 Binary Images Binary images are grayscale images with only two possible levels of.
Morphological Image Processing
AdeptSight Image Processing Tools Lee Haney January 21, 2010.
Introduction Image geometry studies rotation, translation, scaling, distortion, etc. Image topology studies, e.g., (i) the number of occurrences.
Chapter 5: Neighborhood Processing
Digital Image Processing CSC331 Morphological image processing 1.
CS654: Digital Image Analysis Lecture 36: Feature Extraction and Analysis.
CS654: Digital Image Analysis
References Books: Chapter 11, Image Processing, Analysis, and Machine Vision, Sonka et al Chapter 9, Digital Image Processing, Gonzalez & Woods.
CS654: Digital Image Analysis
Nottingham Image Analysis School, 23 – 25 June NITS Image Segmentation Guoping Qiu School of Computer Science, University of Nottingham
CDS 301 Fall, 2008 Image Visualization Chap. 9 November 11, 2008 Jie Zhang Copyright ©
1 Mathematic Morphology used to extract image components that are useful in the representation and description of region shape, such as boundaries extraction.
1 Overview representing region in 2 ways in terms of its external characteristics (its boundary)  focus on shape characteristics in terms of its internal.
Morphological Image Processing Robotics. 2/22/2016Introduction to Machine Vision Remember from Lecture 12: GRAY LEVEL THRESHOLDING Objects Set threshold.
 Mathematical morphology is a tool for extracting image components that are useful in the representation and description of region shape, such as boundaries,
BYST Morp-1 DIP - WS2002: Morphology Digital Image Processing Morphological Image Processing Bundit Thipakorn, Ph.D. Computer Engineering Department.
Machine Vision ENT 273 Hema C.R. Binary Image Processing Lecture 3.
Course 3 Binary Image Binary Images have only two gray levels: “1” and “0”, i.e., black / white. —— save memory —— fast processing —— many features of.
Lecture(s) 3-4. Morphological Image Processing. 3/13/20162 Introduction ► ► Morphology: a branch of biology that deals with the form and structure of.
Chapter 6 Skeleton & Morphological Operation. Image Processing for Pattern Recognition Feature Extraction Acquisition Preprocessing Classification Post.
Morphological Image Processing (Chapter 9) CSC 446 Lecturer: Nada ALZaben.
Morphological Image Processing
Sheng-Fang Huang Chapter 11 part I.  After the image is segmented into regions, how to represent and describe these regions? ◦ In terms of its external.
Materi 09 Analisis Citra dan Visi Komputer Representasi and Deskripsi 1.
April 21, 2016Introduction to Artificial Intelligence Lecture 22: Computer Vision II 1 Canny Edge Detector The Canny edge detector is a good approximation.
Image Representation and Description – Representation Schemes
HIT and MISS.
Introduction to Morphological Operators
Mean Shift Segmentation
Computer Vision Lecture 5: Binary Image Processing
Computer Vision Lecture 9: Edge Detection II
Morphological Operations
CS Digital Image Processing Lecture 5
Binary Image processing بهمن 92
Computer and Robot Vision I
Morphological Operators
Computer and Robot Vision I
DIGITAL IMAGE PROCESSING Elective 3 (5th Sem.)
Presentation transcript:

Document Image Processing Geometrical Transforms Linear Filters Morphological Operations Connected Component Labeling Binarization Contour Tracing X-Y Cuts Smearing Fourier Transform Hough Transform Docstrum Moments and Features

Transform Invariants Geometric Transforms

Affine Transforms Affine transforms cover a linear combination of translations, scale, and rotation I(x,y) is the original image I’(x’,y’) is the transformed image Type Properties Meaning Translation aij = 0; i,j = 1,2 Scaling a12=a21=0 Rotation a11= a12=- a21= a22= Slant a11= 1 a12= a21= 0 a22= 1 : rotation angle : slant angle

Linear Filters Convolution Equation Smoothing Low pass filter Vertical Line Sensitive filter Vertical edge Sensitive filter Enhancement filter Laplacian Edge Operator

Morphological Operators

Dilation For each background pixel superimpose the structuring element on top of the input image so that the origin of the structuring element coincides with the input pixel position. If at least one pixel in the structuring element coincides with a foreground pixel in the image underneath, then the input pixel is set to the foreground value. If all the corresponding pixels in the image are background, however, the input pixel is left at the background value.

Erosion For each foreground pixel superimpose the structuring element on top of the input image so that the origin of the structuring element coincides with the input pixel position. If every pixel in the structuring element coincides with a foreground pixel in the image underneath, then the input pixel is left as is. If any pixel coincides with background, however, the input pixel is changed to background.

Opening and Closing Opening: Erosion followed by Dilation using the same kernel Closing: Dilation followed by Erosion using the same kernel

Hit and Miss Kernel has 1s, 0s, and don’t-care If the 1s and 0s in the kerenel exactly match 1s and 0s in image, then the pixel underneath the origin is set to 1 else 0 Corner finding kernels Final result is “OR” of the outputs used to locate isolated points in a binary image. used to locate the end points on a binary skeleton -four hit-and-miss passes - one for each rotation used to locate the triple points (junctions) on a skeleton.

Thinning NT(P1) = no. of 0 to 1 transitions in the ordered sequence ,<P2, P3, P9, P2> NZ(P1) = no. of non-zero neighbors of P1 Set P1 to 0 If 1<NZ(P1)<7 AND If NT(P1) = 1 AND P2.P4.P8 = 0 OR NT(P2) .NE. 1 AND P2.P4.P6 = 0 OR NT(P4) .NE. 1 Use both kernels and their 90o variations Consider all pixels on the boundaries of foreground regions. Delete pixel that has more than one foreground neighbor, as long as doing so does not locally disconnect Iterate until convergence.

Vornoi Diagrams and Convex Hulls Thickening can be performed by thinning the background Convex hull of a binary shape can be visualized by imagining stretching an elastic band around the shape. The elastic band will follow the convex contours of the shape, but will `bridge' the concave contours. 1a and 1b are used for skeletonization of background. On each thickening iteration till convergence, each element is used in turn, and in each of its 90° rotations. Structuring elements 2a and 2b are used similarly to prune the skeleton until convergence to get VORNOI diagram.

Connected Component Labeling Scan the image by moving along a row reach a point p to be labeled Examines neighbors of p which have already been encountered in the scan (i) to the left of p, (ii) above it, and (iii and iv) the two upper diagonal terms. If all four neighbors are 0, assign a new label to p else if only one neighbor is 1 assign its label to p else if one or more of the neighbors are 1 assign one of the labels to p and note the equivalences. After completing the scan, the equivalent label pairs are sorted into equivalence classes and a unique label is assigned to each class.

Binarization

Adaptive Thresholding Adaptive (T= mean) threshold with 7x7 neighborhood Original gray scale Global threshold Adaptive (T=mean-C) threshold with 7x7 neighborhood; C=7 and C=10 Using T= median instead of the mean

Contour Tracing

Chain Code Contours

Features Geometrical Features Structural Features Moments Sizes in x and y direction, aspect ratio, perimeter, area Maximum and minimum distances from boundary to center of mass Compactness = Perimeter2 / (4 Pi . Area) Signatures = projection profiles Structural Features Number of holes Euler Number = no. of components – no. of holes Moments = area of the object = center of mass

X-Y Cuts Autocorrelation function of the projection profile, k is the lag parameter If k=kp is the first peak following the peak at k=0, sharpness of peak is given by

Smearing Run Length Smearing (RLS) Change runs of white pixels of length below a threshold to black Vertical RLS and AND Horizontal RLS

Fourier Transform

Document Images and FT

Hough Transform Parametric Form Global Peaks in Accumulator Space

Docstrum Slope Histograms Use local information Connect a mark (component) with K (=4..6) neighbors Histogram of the slopes More efficient than projection profiles Docstrum is the radius and angle plot of the slopes